論文の概要: Synaptic bundle theory for spike-driven sensor-motor system: More than eight independent synaptic bundles collapse reward-STDP learning
- arxiv url: http://arxiv.org/abs/2508.14492v1
- Date: Wed, 20 Aug 2025 07:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.37585
- Title: Synaptic bundle theory for spike-driven sensor-motor system: More than eight independent synaptic bundles collapse reward-STDP learning
- Title(参考訳): スパイク駆動型センサ・モーターシステムのためのシナプスバンドル理論:8つ以上の独立したシナプスバンドルは報酬-STDP学習を崩壊させる
- Authors: Takeshi Kobayashi, Shogo Yonekura, Yasuo Kuniyoshi,
- Abstract要約: 運動ニューロンの数や独立したシナプス束の数が限界を超えると,学習は崩壊する。
学習失敗の確率は、より少ない運動ニューロンによって増加するが、(iii) 学習が成功すれば、より速い学習につながる。
- 参考スコア(独自算出の注目度): 2.451044918454393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuronal spikes directly drive muscles and endow animals with agile movements, but applying the spike-based control signals to actuators in artificial sensor-motor systems inevitably causes a collapse of learning. We developed a system that can vary \emph{the number of independent synaptic bundles} in sensor-to-motor connections. This paper demonstrates the following four findings: (i) Learning collapses once the number of motor neurons or the number of independent synaptic bundles exceeds a critical limit. (ii) The probability of learning failure is increased by a smaller number of motor neurons, while (iii) if learning succeeds, a smaller number of motor neurons leads to faster learning. (iv) The number of weight updates that move in the opposite direction of the optimal weight can quantitatively explain these results. The functions of spikes remain largely unknown. Identifying the parameter range in which learning systems using spikes can be constructed will make it possible to study the functions of spikes that were previously inaccessible due to the difficulty of learning.
- Abstract(参考訳): 神経スパイクは筋肉を直接駆動し、動物にアジャイルの動きを与えるが、スパイクに基づく制御信号を人工センサー・モーターシステムのアクチュエータに適用すると必然的に学習が崩壊する。
本研究では,センサとモータの接続において,独立したシナプス束の数が変化するシステムを開発した。
本稿は以下の4つの知見を示す。
i) 学習は運動ニューロンの数や独立したシナプス束の数が限界を超えると崩壊する。
二 学習障害の確率は、少数の運動ニューロンによって増加する。
三 学習が成功すると、運動ニューロンの数が少ないと学習が速くなる。
四 最適な重量の反対方向に移動する重量更新の回数は、これらの結果を定量的に説明することができる。
スパイクの機能はほとんど不明である。
スパイクを用いた学習システムを構築可能なパラメータ範囲の特定は、学習が困難であったために以前はアクセス不能であったスパイクの機能の研究を可能にする。
関連論文リスト
- Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays [50.45313162890861]
シナプス接続強度と遅延を同時に学習するための新しい学習規則を導入する。
我々は、教師なし学習で訓練された分類のための広く使われているSNNモデルを拡張して、我々のアプローチを検証する。
その結果,提案手法は様々なテストシナリオにおいて常に優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-06-17T21:24:58Z) - Confidence Regulation Neurons in Language Models [91.90337752432075]
本研究では,大規模言語モデルが次世代の予測において不確実性を表現・規制するメカニズムについて検討する。
エントロピーニューロンは異常に高い重量ノルムを特徴とし、最終層正規化(LayerNorm)スケールに影響を与え、ロジットを効果的にスケールダウンさせる。
ここで初めて説明するトークン周波数ニューロンは、各トークンのログをそのログ周波数に比例して増加または抑制することで、出力分布をユニグラム分布から遠ざかる。
論文 参考訳(メタデータ) (2024-06-24T01:31:03Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
バイオインスパイアされたニューラルネットワークは、ニューラルネットワークの理解を深め、AIシステムの最先端を改善する可能性がある。
我々は,光リアルな自律走行シミュレータを用いて自律車線維持実験を行い,その性能を種々の条件下で評価する。
論文 参考訳(メタデータ) (2023-11-21T13:07:20Z) - Control of synaptic plasticity via the fusion of reinforcement learning
and unsupervised learning in neural networks [0.0]
認知神経科学では、シナプスの可塑性が我々の驚くべき学習能力に不可欠な役割を担っていると広く受け入れられている。
このインスピレーションにより、強化学習と教師なし学習の融合により、新しい学習規則が提案される。
提案した計算モデルでは,非線形最適制御理論を誤差フィードバックループ系に類似させる。
論文 参考訳(メタデータ) (2023-03-26T12:18:03Z) - Synaptic Stripping: How Pruning Can Bring Dead Neurons Back To Life [0.0]
我々は、致命的な神経細胞問題に対処する手段として、シナプスストリッピングを導入する。
トレーニング中に問題のある接続を自動的に取り除くことで、死んだ神経細胞を再生することができる。
我々は,ネットワーク幅と深さの関数として,これらのダイナミクスを研究するために,いくつかのアブレーション研究を行っている。
論文 参考訳(メタデータ) (2023-02-11T23:55:50Z) - A Fully Memristive Spiking Neural Network with Unsupervised Learning [2.8971214387667494]
このシステムは、神経系とシナプス系の両方のダイナミクスが、メムリスタを用いて実現可能であることを完全に理解している。
提案したMSNNは, 共振器間の電圧波形変化から, 共振器の累積重変化を用いてSTDP学習を実装した。
論文 参考訳(メタデータ) (2022-03-02T21:16:46Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Bio-plausible Unsupervised Delay Learning for Extracting Temporal
Features in Spiking Neural Networks [0.548253258922555]
ニューロン間の伝導遅延の可塑性は、学習において基本的な役割を果たす。
シナプス遅延の正確な調整を理解することは、効果的な脳にインスパイアされた計算モデルを開発するのに役立ちます。
論文 参考訳(メタデータ) (2020-11-18T16:25:32Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
各種タスクにおける他のベースラインよりも優れた性能を示すための2つの新しいマルチスパイク学習ルールを提案する。
特徴検出タスクでは、教師なしSTDPの能力と、その制限を提示する能力を再検討する。
提案した学習ルールは,特定の制約を適用せずに,幅広い条件で確実にタスクを解くことができる。
論文 参考訳(メタデータ) (2020-05-02T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。