論文の概要: Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays
- arxiv url: http://arxiv.org/abs/2506.14984v1
- Date: Tue, 17 Jun 2025 21:24:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.486782
- Title: Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays
- Title(参考訳): スパイクタイミング依存プラスチックのシナプス遅延学習への応用
- Authors: Marissa Dominijanni, Alexander Ororbia, Kenneth W. Regan,
- Abstract要約: シナプス接続強度と遅延を同時に学習するための新しい学習規則を導入する。
我々は、教師なし学習で訓練された分類のための広く使われているSNNモデルを拡張して、我々のアプローチを検証する。
その結果,提案手法は様々なテストシナリオにおいて常に優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 50.45313162890861
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Synaptic delays play a crucial role in biological neuronal networks, where their modulation has been observed in mammalian learning processes. In the realm of neuromorphic computing, although spiking neural networks (SNNs) aim to emulate biology more closely than traditional artificial neural networks do, synaptic delays are rarely incorporated into their simulation. We introduce a novel learning rule for simultaneously learning synaptic connection strengths and delays, by extending spike-timing dependent plasticity (STDP), a Hebbian method commonly used for learning synaptic weights. We validate our approach by extending a widely-used SNN model for classification trained with unsupervised learning. Then we demonstrate the effectiveness of our new method by comparing it against another existing methods for co-learning synaptic weights and delays as well as against STDP without synaptic delays. Results demonstrate that our proposed method consistently achieves superior performance across a variety of test scenarios. Furthermore, our experimental results yield insight into the interplay between synaptic efficacy and delay.
- Abstract(参考訳): シナプス遅延は生物学的神経ネットワークにおいて重要な役割を担い、哺乳類の学習過程においてその調節が観察されている。
ニューロモルフィックコンピューティングの領域では、スパイクニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークよりも生物学をより密にエミュレートすることを目的としているが、シナプス遅延がシミュレーションに組み込まれることはめったにない。
本稿では, シナプス接続強度と遅延を同時に学習するための新しい学習規則を提案する。
我々は、教師なし学習で訓練された分類のための広く使われているSNNモデルを拡張して、我々のアプローチを検証する。
次に, シナプス重みと遅延を学習する他の方法と, シナプス遅延を伴わないSTDPとを比較して, 新たな手法の有効性を実証する。
その結果,提案手法は様々なテストシナリオにおいて常に優れた性能を発揮することが示された。
さらに, 実験結果から, シナプス効果と遅延の相互作用について考察した。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
学習可能なシナプス遅延を2つのアプローチで組み込んだスパイキングニューラルネットワーク(SNN)モデルを提案する。
後者のアプローチでは、ネットワークは接続を選択してプーンし、スパース接続設定の遅延を最適化する。
本研究では,時間的データ処理のための効率的なSNNモデルを構築するために,遅延学習と動的プルーニングを組み合わせる可能性を示す。
論文 参考訳(メタデータ) (2024-07-07T11:55:48Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
バイオインスパイアされたニューラルネットワークは、ニューラルネットワークの理解を深め、AIシステムの最先端を改善する可能性がある。
我々は,光リアルな自律走行シミュレータを用いて自律車線維持実験を行い,その性能を種々の条件下で評価する。
論文 参考訳(メタデータ) (2023-11-21T13:07:20Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks(SNN)は、ニューラルネットワークの第3世代であり、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする。
本稿では,シナプス間の結合可塑性をモデル化し,頑健で効果的な学習機構を提案する。
本手法は静的および最先端のニューロモルフィックデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-07-24T06:12:23Z) - Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks [3.985532502580783]
近年の研究では、学習過程において神経細胞の時間遅延が重要な役割を担っていることが判明している。
スパイクの正確なタイミングを設定することは、SNNにおける時間情報の伝達過程を理解し改善するための有望な方向である。
本稿では,教師付き学習に時間遅延を統合することの有効性を検証するとともに,短期記憶による軸索遅延を変調するモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-20T16:56:42Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)におけるシナプス可塑性と神経調節シナプス可塑性のダイナミクスを学習するための枠組みを導入する。
異なる可塑性で強化されたSNNは、時間的学習課題の集合を解決するのに十分であることを示す。
これらのネットワークは、高次元のロボット学習タスクで移動を生成できることも示されている。
論文 参考訳(メタデータ) (2021-06-04T19:29:07Z) - Bio-plausible Unsupervised Delay Learning for Extracting Temporal
Features in Spiking Neural Networks [0.548253258922555]
ニューロン間の伝導遅延の可塑性は、学習において基本的な役割を果たす。
シナプス遅延の正確な調整を理解することは、効果的な脳にインスパイアされた計算モデルを開発するのに役立ちます。
論文 参考訳(メタデータ) (2020-11-18T16:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。