論文の概要: Evaluating Retrieval-Augmented Generation vs. Long-Context Input for Clinical Reasoning over EHRs
- arxiv url: http://arxiv.org/abs/2508.14817v1
- Date: Wed, 20 Aug 2025 16:09:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.520117
- Title: Evaluating Retrieval-Augmented Generation vs. Long-Context Input for Clinical Reasoning over EHRs
- Title(参考訳): EHRを用いた臨床推論における検索・拡張生成と長期入力の比較検討
- Authors: Skatje Myers, Dmitriy Dligach, Timothy A. Miller, Samantha Barr, Yanjun Gao, Matthew Churpek, Anoop Mayampurath, Majid Afshar,
- Abstract要約: 大規模言語モデル(LLM)は、構造化されていないテキストの抽出と推論に有望なソリューションを提供する。
Retrieval-augmented Generation (RAG)は、EHR全体からタスク関連パスを検索する代替手段を提供する。
以上の結果から,新たなモデルがより長いテキストを扱えるようになったとしても,RAGは競争力と効率のよいアプローチであり続けていることが示唆された。
- 参考スコア(独自算出の注目度): 7.692452997544737
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electronic health records (EHRs) are long, noisy, and often redundant, posing a major challenge for the clinicians who must navigate them. Large language models (LLMs) offer a promising solution for extracting and reasoning over this unstructured text, but the length of clinical notes often exceeds even state-of-the-art models' extended context windows. Retrieval-augmented generation (RAG) offers an alternative by retrieving task-relevant passages from across the entire EHR, potentially reducing the amount of required input tokens. In this work, we propose three clinical tasks designed to be replicable across health systems with minimal effort: 1) extracting imaging procedures, 2) generating timelines of antibiotic use, and 3) identifying key diagnoses. Using EHRs from actual hospitalized patients, we test three state-of-the-art LLMs with varying amounts of provided context, using either targeted text retrieval or the most recent clinical notes. We find that RAG closely matches or exceeds the performance of using recent notes, and approaches the performance of using the models' full context while requiring drastically fewer input tokens. Our results suggest that RAG remains a competitive and efficient approach even as newer models become capable of handling increasingly longer amounts of text.
- Abstract(参考訳): 電子健康記録(EHR)は長く、騒々しく、しばしば冗長であり、それをナビゲートしなければならない臨床医にとって大きな課題である。
大規模言語モデル(LLM)は、この構造化されていないテキストを抽出し、推論するための有望なソリューションを提供するが、臨床ノートの長さは、最先端のモデルの拡張コンテキストウインドウを超えていることが多い。
Retrieval-augmented Generation (RAG)は、EHR全体からタスク関連パスを取得することで、必要な入力トークンの量を削減できる代替手段を提供する。
本研究では,最小限の努力で医療システムに複製可能な3つの臨床課題を提案する。
1)撮像手順の抽出。
2 抗生物質使用のスケジュールの作成、及び
3)鍵診断の特定。
実際の入院患者からの EHR を用いて, 対象テキスト検索, あるいは最新の臨床ノートを用いて, 提供状況の異なる3つの最先端LCM を検査した。
我々は、RAGが最近の音符の使用性能と密に一致し、また、入力トークンを大幅に減らしながら、モデルの全コンテキストの使用性能にアプローチすることを発見した。
以上の結果から,新たなモデルがより長いテキストを扱えるようになったとしても,RAGは競争力と効率のよいアプローチであり続けていることが示唆された。
関連論文リスト
- Applications of Small Language Models in Medical Imaging Classification with a Focus on Prompt Strategies [7.998802413749936]
本研究では,医療画像分類作業における小言語モデル(SLM)の性能について検討する。
NIH Chest X-ray データセットを用いて胸部X線位置を分類する作業において,複数のSLMを評価した。
以上の結果から,一部のSLMは良好なプロンプトで競合精度を達成できることがわかった。
論文 参考訳(メタデータ) (2025-08-18T21:48:45Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
本稿では,放射線学レポート生成のための歴史制約付き大規模言語モデル (HC-LLM) フレームワークを提案する。
胸部X線写真から経時的特徴と経時的特徴を抽出し,疾患の進行を捉える診断報告を行った。
特に,本手法は,テスト中の履歴データなしでも良好に動作し,他のマルチモーダル大規模モデルにも容易に適用可能である。
論文 参考訳(メタデータ) (2024-12-15T06:04:16Z) - RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models [35.60385437194243]
現在の医療用大規模視覚言語モデル(Med-LVLM)は、しばしば現実の問題に遭遇する。
外部知識を利用するRAGは、これらのモデルの現実的精度を向上させることができるが、2つの大きな課題を提起する。
本稿では,2つのコンポーネントからなるRULEを提案する。まず,検索したコンテキストの選択を通じて事実性リスクを制御するための有効な戦略を提案する。
次に、検索したコンテキストへの過度な依存がエラーを引き起こしたサンプルに基づいて、選好データセットをキュレートしてモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-06T16:45:07Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
大規模言語モデル(LLM)は、伝統的に自然言語処理に向いている。
本研究では, GPT-4 などの LLM の EHR データへの適応性について検討する。
EHRデータの長手性、スパース性、知識を注入した性質に対応するため、本研究は特定の特徴を考慮に入れている。
論文 参考訳(メタデータ) (2024-01-25T20:14:50Z) - Question-Answering Based Summarization of Electronic Health Records
using Retrieval Augmented Generation [0.0]
本稿では,セマンティック検索,検索拡張生成,質問応答を組み合わせることで,欠点を軽減できる手法を提案する。
我々のアプローチは非常に効率的で、訓練は最小限から不要であり、LLMの「幻覚」問題に苦しむことはない。
要約には繰り返しの内容はなく、特定の質問に対する多様な回答があるため、多様性を保証する。
論文 参考訳(メタデータ) (2024-01-03T00:09:34Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
既存のエンド・ツー・エンドのネットワークが難易度が低い理由を考察し,アーキテクチャ・サーチ(NAS)を用いたリモートHR計測のための強力なベースラインを確立する。
総合的な実験は、時間内テストとクロスデータセットテストの両方で3つのベンチマークデータセットで実施される。
論文 参考訳(メタデータ) (2020-04-26T05:43:21Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。