論文の概要: From Passive Tool to Socio-cognitive Teammate: A Conceptual Framework for Agentic AI in Human-AI Collaborative Learning
- arxiv url: http://arxiv.org/abs/2508.14825v1
- Date: Wed, 20 Aug 2025 16:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.52412
- Title: From Passive Tool to Socio-cognitive Teammate: A Conceptual Framework for Agentic AI in Human-AI Collaborative Learning
- Title(参考訳): 受動的ツールから社会認知型チームメイト:人間-AI協調学習におけるエージェントAIの概念的枠組み
- Authors: Lixiang Yan,
- Abstract要約: 我々は、ツールとしてのAIから、コラボレーションパートナとしてのAIへの移行をグラフ化する、新しい概念的フレームワークを提案する。
真の意識や共有意図を欠いたAIが真の協力者であるかどうかを検討する。
この区別は、教育におけるAIの教育、教育設計、そして将来の研究課題に重要な意味を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The role of Artificial Intelligence (AI) in education is undergoing a rapid transformation, moving beyond its historical function as an instructional tool towards a new potential as an active participant in the learning process. This shift is driven by the emergence of agentic AI, autonomous systems capable of proactive, goal-directed action. However, the field lacks a robust conceptual framework to understand, design, and evaluate this new paradigm of human-AI interaction in learning. This paper addresses this gap by proposing a novel conceptual framework (the APCP framework) that charts the transition from AI as a tool to AI as a collaborative partner. We present a four-level model of escalating AI agency within human-AI collaborative learning: (1) the AI as an Adaptive Instrument, (2) the AI as a Proactive Assistant, (3) the AI as a Co-Learner, and (4) the AI as a Peer Collaborator. Grounded in sociocultural theories of learning and Computer-Supported Collaborative Learning (CSCL), this framework provides a structured vocabulary for analysing the shifting roles and responsibilities between human and AI agents. The paper further engages in a critical discussion of the philosophical underpinnings of collaboration, examining whether an AI, lacking genuine consciousness or shared intentionality, can be considered a true collaborator. We conclude that while AI may not achieve authentic phenomenological partnership, it can be designed as a highly effective functional collaborator. This distinction has significant implications for pedagogy, instructional design, and the future research agenda for AI in education, urging a shift in focus towards creating learning environments that harness the complementary strengths of both human and AI.
- Abstract(参考訳): 教育における人工知能(AI)の役割は、その歴史的機能を超えて、学習プロセスにおけるアクティブな参加者としての新たなポテンシャルへと、急速に変化しつつある。
このシフトは、プロアクティブでゴール指向のアクションが可能な自律システムであるエージェントAIの出現によって引き起こされる。
しかし、この分野には、学習における人間とAIの相互作用の新しいパラダイムを理解し、設計し、評価するための堅牢な概念的枠組みが欠けている。
本稿では、ツールとしてのAIからコラボレーションパートナとしてのAIへの移行をグラフ化する、新しい概念フレームワーク(APCPフレームワーク)を提案することで、このギャップに対処する。
本研究では,AIを適応器として,AIをプロアクティブアシスタントとして,AIを共同学習者として,AIをピアコラボレーション者として,AIをピアコラボレーションとして,AIを人間-AI協調学習においてエスカレートする4段階のモデルを提案する。
学習の社会文化的理論とCSCL(Computer-Supported Collaborative Learning)に基づくこの枠組みは、人間とAIエージェント間の役割と責任の変化を分析するための構造化語彙を提供する。
さらに、本論文は、真の意識の欠如や共有意図が欠如しているAIが真の協力者であるかどうかを検証し、協調の哲学的基盤について批判的な議論を行う。
我々は、AIは真の現象学的パートナーシップを達成できないかもしれないが、非常に効果的な機能的協力者として設計することができると結論付けた。
この区別は、教育におけるAIのための教育、教育設計、そして将来の研究課題に重要な意味を持ち、人間とAIの相補的な強みを利用する学習環境の構築に焦点を移すよう促している。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
私は、AIのツールとしての狭義の概念化に挑戦し、AIの代替概念化の重要性を主張します。
人工知能と人工情報処理の違いを強調し、AIが人間の学習を理解するための道具としても役立つことを実証する。
本稿では、人間の認知の外部化、人間のメンタルモデルに影響を与えるAIモデルの内部化、密結合された人間とAIハイブリッドインテリジェンスシステムによる人間の認知の拡張という、AIのユニークな概念化について述べる。
論文 参考訳(メタデータ) (2024-03-24T10:07:46Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。