論文の概要: Building Bridges: Generative Artworks to Explore AI Ethics
- arxiv url: http://arxiv.org/abs/2106.13901v1
- Date: Fri, 25 Jun 2021 22:31:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 17:57:29.068609
- Title: Building Bridges: Generative Artworks to Explore AI Ethics
- Title(参考訳): ビルディングブリッジ:AI倫理を探求するジェネレーティブアートワーク
- Authors: Ramya Srinivasan and Devi Parikh
- Abstract要約: 近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
- 参考スコア(独自算出の注目度): 56.058588908294446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, there has been an increased emphasis on understanding and
mitigating adverse impacts of artificial intelligence (AI) technologies on
society. Across academia, industry, and government bodies, a variety of
endeavours are being pursued towards enhancing AI ethics. A significant
challenge in the design of ethical AI systems is that there are multiple
stakeholders in the AI pipeline, each with their own set of constraints and
interests. These different perspectives are often not understood, due in part
to communication gaps.For example, AI researchers who design and develop AI
models are not necessarily aware of the instability induced in consumers' lives
by the compounded effects of AI decisions. Educating different stakeholders
about their roles and responsibilities in the broader context becomes
necessary. In this position paper, we outline some potential ways in which
generative artworks can play this role by serving as accessible and powerful
educational tools for surfacing different perspectives. We hope to spark
interdisciplinary discussions about computational creativity broadly as a tool
for enhancing AI ethics.
- Abstract(参考訳): 近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
学術、産業、政府機関全体で、AI倫理の強化に向けた様々な取り組みが追求されている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
例えば、AIモデルを設計し開発するAI研究者は、AI決定の複合的な効果によって消費者の生活に生じる不安定性を必ずしも認識していない。
より広い文脈で、異なるステークホルダーの役割と責任について教育する必要がある。
本稿では,異なる視点を捉えるためのアクセス可能で強力な教育ツールとして機能することにより,生成的アートワークがこの役割を果たす可能性について概説する。
AI倫理を強化するツールとして、計算創造性に関する学際的な議論を広く起こしたいと考えています。
関連論文リスト
- Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく調べて、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析し、社会的ストレス要因として機能する。
我々は、AIの公正性を改善するための現在の戦略を検討し、現実の展開の観点からその限界を評価し、社会のかなりの部分を損なうことなくAIの利益を享受するための潜在的な道を探る。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Unpacking the "Black Box" of AI in Education [0.0]
われわれは,「AI」とは何か,それが人間の状態を改善する教育機会の進展と妨げに持つ可能性を明らかにすることを目指している。
我々は、AIを支える様々な方法と哲学の基礎的な紹介、最近の進歩について議論、教育への応用を探究し、重要な制限とリスクを強調します。
教育における人間中心のAIの発展を理解し、尋問し、最終的に形作ることができるように、ジャーゴンの言葉や概念をしばしば利用できるようにすることを願っています。
論文 参考訳(メタデータ) (2022-12-31T18:27:21Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - AI and the Sense of Self [0.0]
我々は、自己の認知的感覚と、責任ある行動につながる自律的な意思決定におけるその役割に焦点を当てる。
著者らは、AIエージェントのよりリッチな計算モデルを構築することに、より研究的な関心を抱くことを期待している。
論文 参考訳(メタデータ) (2022-01-07T10:54:06Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
本稿では、感情認識型AIの倫理的結果(道徳的・倫理的結果)を評価するためのガイドラインを提案する。
我々は,AI開発者による倫理的責任を分離し,そのようなAIをデプロイするエンティティをビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビ
最終的には研究者、開発者、オペレーター、規制当局、法執行機関への勧告で終わります。
論文 参考訳(メタデータ) (2021-07-29T03:57:53Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
ショートガイドは、AI倫理と社会科学の紹介と、AIの開発に関する人類学的視点の両方を兼ね備えている。
AIシステムの社会的影響と、これらのシステムがいかにして我々の世界がどのように機能するかを再考するかについての洞察を、この分野に馴染みのない人たちに提供することを目指している。
論文 参考訳(メタデータ) (2020-10-07T12:25:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。