論文の概要: Sampling by averaging: A multiscale approach to score estimation
- arxiv url: http://arxiv.org/abs/2508.15069v1
- Date: Wed, 20 Aug 2025 21:09:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.095127
- Title: Sampling by averaging: A multiscale approach to score estimation
- Title(参考訳): 平均化によるサンプリング:スコア推定のためのマルチスケールアプローチ
- Authors: Paula Cordero-Encinar, Andrew B. Duncan, Sebastian Reich, O. Deniz Akyildiz,
- Abstract要約: 複雑で正規化されていないターゲット分布から,マルチスケールのダイナミックスを活用することで,効率的なサンプリングを行うための新しいフレームワークを提案する。
MultALMCとMultCDiffの2つのアルゴリズムが開発された。
このフレームワークは、学生のtベースのノイズモデルと調整された高速プロセスダイナミクスを用いて、重次元のターゲット分布を扱うように拡張されている。
- 参考スコア(独自算出の注目度): 2.012425476229879
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel framework for efficient sampling from complex, unnormalised target distributions by exploiting multiscale dynamics. Traditional score-based sampling methods either rely on learned approximations of the score function or involve computationally expensive nested Markov chain Monte Carlo (MCMC) loops. In contrast, the proposed approach leverages stochastic averaging within a slow-fast system of stochastic differential equations (SDEs) to estimate intermediate scores along a diffusion path without training or inner-loop MCMC. Two algorithms are developed under this framework: MultALMC, which uses multiscale annealed Langevin dynamics, and MultCDiff, based on multiscale controlled diffusions for the reverse-time Ornstein-Uhlenbeck process. Both overdamped and underdamped variants are considered, with theoretical guarantees of convergence to the desired diffusion path. The framework is extended to handle heavy-tailed target distributions using Student's t-based noise models and tailored fast-process dynamics. Empirical results across synthetic and real-world benchmarks, including multimodal and high-dimensional distributions, demonstrate that the proposed methods are competitive with existing samplers in terms of accuracy and efficiency, without the need for learned models.
- Abstract(参考訳): 複雑で正規化されていないターゲット分布から,マルチスケールのダイナミックスを活用することで,効率的なサンプリングを行うための新しいフレームワークを提案する。
伝統的なスコアベースのサンプリング手法は、スコア関数の学習した近似に依存するか、計算に高価なネスト付きマルコフ連鎖モンテカルロ (MCMC) ループを含む。
対照的に, 提案手法は, 速度の遅い確率微分方程式(SDE)内での確率平均化を利用して, トレーニングやインナーループMCMCを使わずに, 拡散経路に沿って中間点を推定する。
マルチスケールアニールランゲイン力学を用いたMultALMCと、逆時間Ornstein-Uhlenbeckプロセスのためのマルチスケール制御拡散に基づくMultCDiffの2つのアルゴリズムが開発されている。
過度に損傷された変種と過度に損傷された変種の両方が考慮され、理論上は所望の拡散経路への収束が保証される。
このフレームワークは、学生のtベースのノイズモデルと調整された高速プロセスのダイナミックスを使用して、重いターゲット分布を扱うように拡張されている。
マルチモーダルおよび高次元分布を含む実世界および実世界のベンチマークにおける実験結果から,提案手法は学習モデルを必要としない精度と効率の点で既存のサンプルと競合することを示した。
関連論文リスト
- Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage [16.94974733994214]
一般的な手法では、逆KLベースの目的を最適化することで、ターゲットデータの欠如を回避できることが多い。
そこで本研究では,KLの分岐に類似した目的を直接ターゲットとした拡散型サンプリング器の訓練手法を提案する。
我々のアプローチは、すべての分布距離のメトリクスで既存のニューラルサンプリングよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-05-26T02:48:26Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - Diffusion Generative Modelling for Divide-and-Conquer MCMC [0.0]
Divide-and-conquer MCMCはマルコフ連鎖モンテカルロサンプリングの並列化戦略である。
本稿では,拡散生成モデルを用いて後続分布に密度近似を適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T15:48:46Z) - Flow map matching with stochastic interpolants: A mathematical framework for consistency models [15.520853806024943]
フローマップマッチングは、基礎となる生成モデルの2時間フローマップを学ぶための原則化されたフレームワークである。
FMMは,高速サンプリングのための既存手法の幅広いクラスを統一し,拡張することを示す。
論文 参考訳(メタデータ) (2024-06-11T17:41:26Z) - Stochastic Localization via Iterative Posterior Sampling [2.1383136715042417]
我々は、一般的なローカライゼーションフレームワークを検討し、フレキシブルなdenoisingスケジュールに関連する観察プロセスの明示的なクラスを導入する。
我々は、このダイナミクスの近似的なサンプルを得るために、SLIPS (Iterative Posterior Sampling$) による完全な方法論である $textitStochastic Localization を提供する。
SLIPSの利点と適用性について,数種類のマルチモーダル分布のベンチマークで論じる。例えば,増加次元の混合,ロジスティック回帰,統計力学からの高次元場システムなどである。
論文 参考訳(メタデータ) (2024-02-16T15:28:41Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
スライスサンプリング (Slice Sampling) は、最小ハンドチューニングで目標分布の特性に適応するマルコフ連鎖モンテカルロアルゴリズムとして登場した。
本稿では,初期長さ尺度を適応的に調整することで,そのような困難を回避できるアルゴリズムであるEnsemble Slice Sampling(ESS)を紹介する。
これらのアフィン不変アルゴリズムは簡単に構築でき、手作業で調整する必要がなく、並列計算環境で容易に実装できる。
論文 参考訳(メタデータ) (2020-02-14T19:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。