論文の概要: Robust and Efficient Quantum Reservoir Computing with Discrete Time Crystal
- arxiv url: http://arxiv.org/abs/2508.15230v1
- Date: Thu, 21 Aug 2025 04:40:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.183282
- Title: Robust and Efficient Quantum Reservoir Computing with Discrete Time Crystal
- Title(参考訳): 離散時間結晶を用いたロバストかつ効率的な量子貯留層計算
- Authors: Da Zhang, Xin Li, Yibin Guo, Haifeng Yu, Yirong Jin, Zhang-Qi Yin,
- Abstract要約: 我々は、離散時間結晶力学を貯水池として活用する勾配のない、ノイズロスのない量子貯水池計算アルゴリズムを導入する。
10クラスの分類では、超伝導量子プロセッサのノイズシミュレーションと実験結果の両方が理想的なシミュレーションと一致する。
量子多体非平衡相転移と量子機械学習性能の相関関係を確立する。
- 参考スコア(独自算出の注目度): 7.504145813547092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of machine learning and quantum computing has placed quantum machine learning at the forefront of research. However, existing quantum machine learning algorithms based on quantum variational algorithms face challenges in trainability and noise robustness. In order to address these challenges, we introduce a gradient-free, noise-robust quantum reservoir computing algorithm that harnesses discrete time crystal dynamics as a reservoir. We first calibrate the memory, nonlinear, and information scrambling capacities of the quantum reservoir, revealing their correlation with dynamical phases and non-equilibrium phase transitions. We then apply the algorithm to the binary classification task and establish a comparative quantum kernel advantage. For ten-class classification, both noisy simulations and experimental results on superconducting quantum processors match ideal simulations, demonstrating the enhanced accuracy with increasing system size and confirming the topological noise robustness. Our work presents the first experimental demonstration of quantum reservoir computing for image classification based on digital quantum simulation. It establishes the correlation between quantum many-body non-equilibrium phase transitions and quantum machine learning performance, providing new design principles for quantum reservoir computing and broader quantum machine learning algorithms in the NISQ era.
- Abstract(参考訳): 機械学習と量子コンピューティングの急速な発展により、量子機械学習は研究の最前線に立った。
しかし、量子変分アルゴリズムに基づく既存の量子機械学習アルゴリズムは、トレーニング容易性とノイズロバストネスの課題に直面している。
これらの課題に対処するため、我々は、離散時間結晶力学を貯水池として活用する勾配のないノイズロスト量子貯水池計算アルゴリズムを導入する。
まず, 量子貯水池のメモリ, 非線形, 情報交換容量をキャリブレーションし, 動的相と非平衡相転移との相関関係を明らかにする。
次に、このアルゴリズムを二項分類タスクに適用し、比較量子カーネルの優位性を確立する。
10クラスの分類では、超伝導量子プロセッサのノイズシミュレーションと実験結果の両方が理想的なシミュレーションと一致し、システムサイズが増大し、トポロジカルノイズロバスト性が確認された。
本研究は,デジタル量子シミュレーションに基づく画像分類のための量子貯水池計算の実験実験である。
NISQ時代の量子多体非平衡相転移と量子機械学習性能の相関を確立し、量子貯水池コンピューティングとより広範な量子機械学習アルゴリズムのための新しい設計原則を提供する。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
この論文は、量子計算資源の要求を減らす2つの主要な技術を開発した。
目的は、現在の量子プロセッサでアプリケーションサイズをスケールアップすることだ。
アルゴリズムの応用の主な焦点は量子システムのシミュレーションであるが、開発したサブルーチンは最適化や機械学習の分野でさらに活用することができる。
論文 参考訳(メタデータ) (2024-03-01T19:36:35Z) - Classical and quantum reservoir computing: development and applications
in machine learning [0.0]
貯留層計算(Reservoir computing)は、非線形力学系を用いてデータから複雑な時間パターンを学習する、新しい機械学習アルゴリズムである。
この研究は、農業時系列予測を含む、非常に異なる領域にわたるアルゴリズムの堅牢性と適応性を実証している。
この論文の最後の貢献は、量子貯水池計算のためのアルゴリズム設計の最適化である。
論文 参考訳(メタデータ) (2023-10-11T13:01:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
量子コンピューティングのノイズ中間スケール量子(NISQ)時代には、量子資源は限られている。
ボゾン基底と励起状態計算のための資源効率のよい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-23T19:00:05Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
我々は、雑音に対する量子機械学習アルゴリズムの検証と解析のための正式なフレームワークを定義する。
堅牢な境界が導出され、量子機械学習アルゴリズムが量子トレーニングデータに対して堅牢であるか否かを確認するアルゴリズムが開発された。
我々のアプローチはGoogleのQuantum分類器に実装されており、ノイズの小さな乱れに関して量子機械学習アルゴリズムの堅牢性を検証することができる。
論文 参考訳(メタデータ) (2020-08-17T11:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。