論文の概要: ExBigBang: A Dynamic Approach for Explainable Persona Classification through Contextualized Hybrid Transformer Analysis
- arxiv url: http://arxiv.org/abs/2508.15364v1
- Date: Thu, 21 Aug 2025 08:45:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.244755
- Title: ExBigBang: A Dynamic Approach for Explainable Persona Classification through Contextualized Hybrid Transformer Analysis
- Title(参考訳): ExBigBang: コンテキスト型ハイブリッドトランス解析による説明可能なペルソナ分類の動的アプローチ
- Authors: Saleh Afzoon, Amin Beheshti, Nabi Rezvani, Farshad Khunjush, Usman Naseem, John McMahon, Zahra Fathollahi, Mahdieh Labani, Wathiq Mansoor, Xuyun Zhang,
- Abstract要約: ユーザ中心の設計において、ペルソナ開発は、ユーザの振る舞いを理解し、ニーズを捉え、聴衆をセグメント化し、設計決定を導く上で重要な役割を担います。
ExBigBangは、トランスフォーマーベースのアーキテクチャを用いて、ペルソナ分類のためのリッチなコンテキスト特徴をモデル化するハイブリッドテキストタブラルアプローチである。
- 参考スコア(独自算出の注目度): 9.71470000241119
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In user-centric design, persona development plays a vital role in understanding user behaviour, capturing needs, segmenting audiences, and guiding design decisions. However, the growing complexity of user interactions calls for a more contextualized approach to ensure designs align with real user needs. While earlier studies have advanced persona classification by modelling user behaviour, capturing contextual information, especially by integrating textual and tabular data, remains a key challenge. These models also often lack explainability, leaving their predictions difficult to interpret or justify. To address these limitations, we present ExBigBang (Explainable BigBang), a hybrid text-tabular approach that uses transformer-based architectures to model rich contextual features for persona classification. ExBigBang incorporates metadata, domain knowledge, and user profiling to embed deeper context into predictions. Through a cyclical process of user profiling and classification, our approach dynamically updates to reflect evolving user behaviours. Experiments on a benchmark persona classification dataset demonstrate the robustness of our model. An ablation study confirms the benefits of combining text and tabular data, while Explainable AI techniques shed light on the rationale behind the model's predictions.
- Abstract(参考訳): ユーザ中心の設計において、ペルソナ開発は、ユーザの振る舞いを理解し、ニーズを捉え、聴衆をセグメント化し、設計決定を導く上で重要な役割を担います。
しかし、ユーザインタラクションの複雑さが増すにつれ、設計が実際のユーザニーズと整合することを保証するための、よりコンテキスト化されたアプローチが求められます。
従来の研究では、ユーザの振る舞いをモデル化し、コンテキスト情報、特にテキストデータと表データを統合することによって、高度なペルソナ分類が行われていたが、依然として重要な課題である。
これらのモデルは説明可能性に欠けることが多く、予測の解釈や正当化が困難である。
これらの制約に対処するために,トランスフォーマーベースのアーキテクチャを用いてペルソナ分類のためのリッチなコンテキスト特徴をモデル化するハイブリッドテキストタブラルアプローチであるExBigBang(Explainable BigBang)を提案する。
ExBigBangはメタデータ、ドメイン知識、ユーザープロファイリングを組み込んで、より深いコンテキストを予測に埋め込む。
ユーザプロファイリングと分類の循環的プロセスを通じて、我々のアプローチは動的に更新され、進化するユーザの振る舞いを反映する。
ベンチマークペルソナ分類データセットの実験は、我々のモデルの堅牢性を示す。
アブレーション調査では、テキストと表データを組み合わせるメリットが確認されている一方、説明可能なAI技術は、モデルの予測の背後にある理論的根拠に光を当てている。
関連論文リスト
- Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
InterpretCCは、人間の理解の容易さと忠実さの説明を最適化する、本質的に解釈可能なニューラルネットワークのファミリーである。
本報告では,InterpretCCの説明は,他の本質的な解釈可能なアプローチよりも,行動性や有用性が高いことを示す。
論文 参考訳(メタデータ) (2024-02-05T11:55:50Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - Human Learning by Model Feedback: The Dynamics of Iterative Prompting
with Midjourney [28.39697076030535]
本稿では,そのようなイテレーションに沿ってユーザプロンプトのダイナミクスを解析する。
これらのイテレーションに沿った特定の特性に対して、プロンプトが予測通りに収束することを示します。
ユーザがモデルの好みに適応する可能性は、さらなるトレーニングのためにユーザデータの再利用に関する懸念を提起する。
論文 参考訳(メタデータ) (2023-11-20T19:28:52Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
応答生成のためのスタイル特化属性を学習するために,モデルパラメータの0.3%しか更新しない新しい転送学習フレームワークを提案する。
我々はPERSONALITY-CAPTIONSデータセットからスタイル固有の属性を学習する。
論文 参考訳(メタデータ) (2022-10-07T00:09:22Z) - RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query
Product Evolutionary Graph [18.826901341496143]
時間的イベント予測は、統合クエリ製品進化グラフにおける新しいユーザ行動予測タスクである。
本稿では,新しいイベント予測フレームワークを提案する。
既存手法とは違って,グラフ全体の大まかに連結されたエンティティを通じてユーザ表現を強化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-12T19:27:56Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
モデルが入力特徴の異なる部分集合に依存する度合いを評価する指標である知覚スコアを導入する。
近年,視覚的質問応答に対するマルチモーダルモデルでは,前者よりも視覚的データを知覚しにくい傾向がみられた。
知覚スコアを使用することで、スコアをデータサブセットのコントリビューションに分解することで、モデルのバイアスを分析することもできる。
論文 参考訳(メタデータ) (2021-10-27T12:19:56Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Modeling Dynamic User Interests: A Neural Matrix Factorization Approach [0.0]
本稿では,行列分解の単純さとニューラルネットワークの柔軟性を組み合わせたモデルを提案する。
本モデルでは,ユーザのコンテンツ消費経路を非線形ユーザとコンテンツ要素に分解する。
当社のモデルを使って、ボストン・グローブ読者の5年間での動的ニュース消費利益を理解する。
論文 参考訳(メタデータ) (2021-02-12T16:24:21Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Large-scale Hybrid Approach for Predicting User Satisfaction with
Conversational Agents [28.668681892786264]
ユーザの満足度を測定することは難しい課題であり、大規模な会話エージェントシステムの開発において重要な要素である。
人間のアノテーションに基づくアプローチは簡単に制御できるが、スケールするのは難しい。
新たなアプローチとして,会話エージェントシステムに埋め込まれたフィードバック誘導システムを通じて,ユーザの直接的なフィードバックを収集する手法がある。
論文 参考訳(メタデータ) (2020-05-29T16:29:09Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。