論文の概要: Deep Equilibrium Convolutional Sparse Coding for Hyperspectral Image Denoising
- arxiv url: http://arxiv.org/abs/2508.15553v1
- Date: Thu, 21 Aug 2025 13:35:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.349799
- Title: Deep Equilibrium Convolutional Sparse Coding for Hyperspectral Image Denoising
- Title(参考訳): ハイパースペクトル画像復調のための深部平衡畳み込みスパース符号化
- Authors: Jin Ye, Jingran Wang, Fengchao Xiong, Jingzhou Chen, Yuntao Qian,
- Abstract要約: ハイパースペクトル画像(HSI)はリモートセンシングにおいて重要な役割を果たすが、複雑なノイズパターンによって劣化することが多い。
分解されたHSIの物理的特性の確保は、強靭なHSIの分解に不可欠であり、深層展開法が台頭する。
本研究では,局所的空間スペクトル相関,非局所的空間自己相似性,大域的空間一貫性を統一するDeep Equilibrium Convolutional Sparse Coding(DECSC)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.405355853358202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral images (HSIs) play a crucial role in remote sensing but are often degraded by complex noise patterns. Ensuring the physical property of the denoised HSIs is vital for robust HSI denoising, giving the rise of deep unfolding-based methods. However, these methods map the optimization of a physical model to a learnable network with a predefined depth, which lacks convergence guarantees. In contrast, Deep Equilibrium (DEQ) models treat the hidden layers of deep networks as the solution to a fixed-point problem and models them as infinite-depth networks, naturally consistent with the optimization. Under the framework of DEQ, we propose a Deep Equilibrium Convolutional Sparse Coding (DECSC) framework that unifies local spatial-spectral correlations, nonlocal spatial self-similarities, and global spatial consistency for robust HSI denoising. Within the convolutional sparse coding (CSC) framework, we enforce shared 2D convolutional sparse representation to ensure global spatial consistency across bands, while unshared 3D convolutional sparse representation captures local spatial-spectral details. To further exploit nonlocal self-similarities, a transformer block is embedded after the 2D CSC. Additionally, a detail enhancement module is integrated with the 3D CSC to promote image detail preservation. We formulate the proximal gradient descent of the CSC model as a fixed-point problem and transform the iterative updates into a learnable network architecture within the framework of DEQ. Experimental results demonstrate that our DECSC method achieves superior denoising performance compared to state-of-the-art methods.
- Abstract(参考訳): ハイパースペクトル画像(HSI)はリモートセンシングにおいて重要な役割を果たすが、複雑なノイズパターンによって劣化することが多い。
分解されたHSIの物理的特性の確保は、強靭なHSIの分解に不可欠であり、深層展開法が台頭する。
しかし、これらの手法は、物理モデルの最適化を事前定義された深度を持つ学習可能なネットワークにマッピングし、収束保証が欠如している。
対照的に、Deep Equilibrium (DEQ) モデルは、深いネットワークの隠された層を固定点問題の解として扱い、それを無限深度ネットワークとしてモデル化する。
DEQの枠組みでは,局所空間スペクトル相関,非局所空間自己相似性,ロバストなHSI復調のための大域空間整合性を統一するDeep Equilibrium Convolutional Sparse Coding (DECSC) フレームワークを提案する。
畳み込みスパース符号化(CSC)フレームワークでは,帯域間のグローバルな空間整合性を確保するために,共有2次元畳み込みスパース表現を強制する一方,非共有3次元畳み込みスパース表現は局所的な空間-スペクトルの詳細をキャプチャする。
非局所的な自己相似性をさらに活用するために、2D CSCの後、変圧器ブロックを埋め込む。
さらに、ディテール強調モジュールを3D CSCに統合し、ディテール保存を促進する。
我々は,CSCモデルの近位勾配勾配を固定点問題として定式化し,繰り返し更新をDECのフレームワーク内で学習可能なネットワークアーキテクチャに変換する。
実験結果から,DECSC法は最先端手法と比較して優れたノイズ発生性能が得られることが示された。
関連論文リスト
- H3R: Hybrid Multi-view Correspondence for Generalizable 3D Reconstruction [39.22287224290769]
H3Rは、潜在融合と注目に基づく機能集約を統合するハイブリッドフレームワークである。
両パラダイムを統合することで,既存手法よりも2$times$高速に収束しながら,一般化が促進される。
本手法は,ロバストなクロスデータセットの一般化を実証しながら,可変数および高分解能な入力ビューをサポートする。
論文 参考訳(メタデータ) (2025-08-05T05:56:30Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
我々は、KNN法を用いて、原表面点の近傍を決定する。
条件付き確率モデルは局所幾何学に適応し、大きな速度減少をもたらす。
暗黙のニューラル表現を精製層に組み込むことで、デコーダは任意の密度で下面の点をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-08-06T05:24:06Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
Coded Aperture Snapshot Spectral Imaging (CASSI) の逆問題について検討する。
粗面スペクトル対応変形性畳み込みネットワーク(CFSDCN)を提案する。
我々のCFSDCNは、シミュレーションされたHSIデータセットと実際のHSIデータセットの両方において、従来の最先端(SOTA)メソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-06-18T15:15:12Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。