論文の概要: Breaking Barriers in Software Testing: The Power of AI-Driven Automation
- arxiv url: http://arxiv.org/abs/2508.16025v1
- Date: Fri, 22 Aug 2025 01:04:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.216812
- Title: Breaking Barriers in Software Testing: The Power of AI-Driven Automation
- Title(参考訳): ソフトウェアテストにおける障壁を打破する - AI駆動の自動化の力
- Authors: Saba Naqvi, Mohammad Baqar,
- Abstract要約: 本稿では、自然言語処理(NLP)、強化学習(RL)、予測モデルを用いたテストケース生成と検証を自動化するAI駆動フレームワークを提案する。
ケーススタディでは、欠陥の検出、テストの労力の削減、リリースサイクルの高速化が測定可能な向上を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software testing remains critical for ensuring reliability, yet traditional approaches are slow, costly, and prone to gaps in coverage. This paper presents an AI-driven framework that automates test case generation and validation using natural language processing (NLP), reinforcement learning (RL), and predictive models, embedded within a policy-driven trust and fairness model. The approach translates natural language requirements into executable tests, continuously optimizes them through learning, and validates outcomes with real-time analysis while mitigating bias. Case studies demonstrate measurable gains in defect detection, reduced testing effort, and faster release cycles, showing that AI-enhanced testing improves both efficiency and reliability. By addressing integration and scalability challenges, the framework illustrates how AI can shift testing from a reactive, manual process to a proactive, adaptive system that strengthens software quality in increasingly complex environments.
- Abstract(参考訳): ソフトウェアテストは信頼性を確保する上では依然として重要ですが、従来のアプローチは遅く、コストがかかり、カバレッジのギャップが生じる傾向があります。
本稿では、自然言語処理(NLP)、強化学習(RL)、予測モデルを用いたテストケース生成と検証を自動化するAI駆動フレームワークを提案する。
このアプローチは、自然言語要求を実行可能なテストに変換し、学習を通じて継続的に最適化し、バイアスを緩和しながらリアルタイム分析で結果を検証する。
ケーススタディでは、欠陥の検出、テストの労力の削減、リリースサイクルの高速化が測定可能な向上を示している。
統合とスケーラビリティの課題に対処することで、このフレームワークは、AIがテストをリアクティブで手動のプロセスから、ますます複雑な環境におけるソフトウェア品質を強化する積極的な適応システムに移行する方法について説明している。
関連論文リスト
- AI-Driven Tools in Modern Software Quality Assurance: An Assessment of Benefits, Challenges, and Future Directions [0.0]
この研究は、現代のAI指向ツールを品質保証プロセスに統合するメリット、課題、および展望を評価することを目的としている。
この研究は、AIがQAに変革をもたらす可能性を実証しているが、これらの技術を実装するための戦略的アプローチの重要性を強調している。
論文 参考訳(メタデータ) (2025-06-19T20:22:47Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大規模言語モデル(LLM)は、不一致の自己認識に起因する幻覚の傾向にある。
本稿では,高速かつ低速な推論システムを統合し,信頼性とユーザビリティを調和させる明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - The Future of Software Testing: AI-Powered Test Case Generation and Validation [0.0]
本稿では、テストケースの生成と検証を改善する上で、AIが持つ変革の可能性について考察する。
テストプロセスの効率性、正確性、スケーラビリティを高める能力に重点を置いている。
また、高品質なトレーニングデータの必要性など、テストにAIを適用する際の重要な課題にも対処している。
論文 参考訳(メタデータ) (2024-09-09T17:12:40Z) - AI-powered software testing tools: A systematic review and empirical assessment of their features and limitations [1.0344642971058589]
AI駆動のテスト自動化ツールは、ソフトウェア品質を改善し、手動テストの労力を減らす強力な可能性を示している。
将来の研究は、ソフトウェアテストの適応性、信頼性、堅牢性を改善するために、AIモデルを進化させることに焦点を当てるべきである。
論文 参考訳(メタデータ) (2024-08-31T10:10:45Z) - Position: AI Evaluation Should Learn from How We Test Humans [65.36614996495983]
人間の評価のための20世紀起源の理論である心理測定は、今日のAI評価における課題に対する強力な解決策になり得る、と我々は主張する。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。