論文の概要: Domain Adaptation via Feature Refinement
- arxiv url: http://arxiv.org/abs/2508.16124v1
- Date: Fri, 22 Aug 2025 06:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.268973
- Title: Domain Adaptation via Feature Refinement
- Title(参考訳): 機能リファインメントによるドメイン適応
- Authors: Savvas Karatsiolis, Andreas Kamilaris,
- Abstract要約: 本稿では,分散シフト下での非教師付きドメイン適応のための簡易かつ効果的なフレームワークであるDAFR(Domain Adaptation via Feature Refinement)を提案する。
提案手法は, ラベルなし対象データを用いたバッチ正規化統計の適応, ソース学習モデルからの特徴蒸留, 仮説伝達の3つの重要な要素を組み合わせた。
- 参考スコア(独自算出の注目度): 0.3867363075280543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Domain Adaptation via Feature Refinement (DAFR2), a simple yet effective framework for unsupervised domain adaptation under distribution shift. The proposed method synergistically combines three key components: adaptation of Batch Normalization statistics using unlabeled target data, feature distillation from a source-trained model and hypothesis transfer. By aligning feature distributions at the statistical and representational levels, DAFR2 produces robust and domain-invariant feature spaces that generalize across similar domains without requiring target labels, complex architectures or sophisticated training objectives. Extensive experiments on benchmark datasets, including CIFAR10-C, CIFAR100-C, MNIST-C and PatchCamelyon-C, demonstrate that the proposed algorithm outperforms prior methods in robustness to corruption. Theoretical and empirical analyses further reveal that our method achieves improved feature alignment, increased mutual information between the domains and reduced sensitivity to input perturbations.
- Abstract(参考訳): 本稿では,分散シフト下での非教師付きドメイン適応のための簡易かつ効果的なフレームワークであるDAFR(Domain Adaptation via Feature Refinement)を提案する。
提案手法は, ラベルなし対象データを用いたバッチ正規化統計の適応, ソース学習モデルからの特徴蒸留, 仮説伝達の3つの重要な要素を相乗的に結合する。
統計的および表現的レベルで特徴分布を整列させることにより、DAFR2は、ターゲットラベル、複雑なアーキテクチャ、洗練された訓練目的を必要とせずに、類似のドメインをまたいで一般化する堅牢で領域不変な特徴空間を生成する。
CIFAR10-C、CIFAR100-C、MNIST-C、PatchCamelyon-Cといったベンチマークデータセットの大規模な実験により、提案アルゴリズムは腐敗に対する堅牢性において従来の手法よりも優れていることが示された。
理論的および経験的分析により,提案手法は特徴整合性の向上,ドメイン間の相互情報の向上,入力摂動に対する感度の低下を実現していることが明らかとなった。
関連論文リスト
- Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation [8.139534851987364]
マルチソースドメイン適応(MSDA)は、産業モデル一般化において重要な役割を果たす。
MSDAにおける最近の取り組みは、マルチドメイン分散アライメントの強化に焦点を当てている。
本稿では,クラスレベルとドメインレベルにおけるソースドメインとターゲットドメインの相違をモデル化するプロトタイプアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:44:35Z) - A Robust Negative Learning Approach to Partial Domain Adaptation Using
Source Prototypes [0.8895157045883034]
この研究は、負の転送問題を緩和する堅牢な部分的ドメイン適応(PDA)フレームワークを提案する。
それは多様で相補的なラベルフィードバックを含み、誤ったフィードバックの効果を緩和し、擬似ラベル改善を促進する。
我々は,部分領域適応タスクを網羅するアブレーション解析を含む包括的実験を行った。
論文 参考訳(メタデータ) (2023-09-07T07:26:27Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
半教師付きドメイン適応(SSDA)は、ソースドメインデータとラベル付きターゲットサンプルを効果的に活用することにより、学習者を新しいドメインに適応させる。
提案手法は,SSDAデータセットの有効性と汎用性の観点から,SOTA法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-30T16:48:28Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering [35.008158504090176]
教師なし領域適応(Unsupervised domain adapt, UDA)とは、対象ドメイン上のラベルなしデータの予測であり、対象ドメインから分布がシフトするソースドメイン上のラベル付きデータである。
対象データの識別クラスタリングにより,本質的な対象識別を直接発見することを提案する。
我々は,提案手法をSRDC (Structurely Regularized Deep Clustering) と呼ぶ。
論文 参考訳(メタデータ) (2020-03-19T07:26:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。