論文の概要: Motor Imagery EEG Signal Classification Using Minimally Random Convolutional Kernel Transform and Hybrid Deep Learning
- arxiv url: http://arxiv.org/abs/2508.16179v1
- Date: Fri, 22 Aug 2025 07:55:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.299287
- Title: Motor Imagery EEG Signal Classification Using Minimally Random Convolutional Kernel Transform and Hybrid Deep Learning
- Title(参考訳): 最小ランダム畳み込みカーネル変換とハイブリッドディープラーニングを用いた運動画像脳波信号分類
- Authors: Jamal Hwaidi, Mohamed Chahine Ghanem,
- Abstract要約: 例えば、運動画像脳-コンピュータインターフェース(MI-BCI)を通じて測定された特定の認知タスクや運動タスクに関連する隠されたパターンを処理し、理解することが重要である。
運動画像に基づく脳波(MI-EEG)タスクの分類によって重要な課題が提示される。
本稿では、最小ランダム畳み込みカーネル変換(MiniRocket)により特徴を効率的に抽出する脳波信号の分類法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The brain-computer interface (BCI) establishes a non-muscle channel that enables direct communication between the human body and an external device. Electroencephalography (EEG) is a popular non-invasive technique for recording brain signals. It is critical to process and comprehend the hidden patterns linked to a specific cognitive or motor task, for instance, measured through the motor imagery brain-computer interface (MI-BCI). A significant challenge is presented by classifying motor imagery-based electroencephalogram (MI-EEG) tasks, given that EEG signals exhibit nonstationarity, time-variance, and individual diversity. Obtaining good classification accuracy is also very difficult due to the growing number of classes and the natural variability among individuals. To overcome these issues, this paper proposes a novel method for classifying EEG motor imagery signals that extracts features efficiently with Minimally Random Convolutional Kernel Transform (MiniRocket), a linear classifier then uses the extracted features for activity recognition. Furthermore, a novel deep learning based on Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) architecture to serve as a baseline was proposed and demonstrated that classification via MiniRocket's features achieves higher performance than the best deep learning models at lower computational cost. The PhysioNet dataset was used to evaluate the performance of the proposed approaches. The proposed models achieved mean accuracy values of 98.63% and 98.06% for the MiniRocket and CNN-LSTM, respectively. The findings demonstrate that the proposed approach can significantly enhance motor imagery EEG accuracy and provide new insights into the feature extraction and classification of MI-EEG.
- Abstract(参考訳): 脳-コンピュータインターフェース(BCI)は、人体と外部装置との直接通信を可能にする非筋肉チャネルを確立する。
脳波(Electroencephalography)は、脳の信号を記録するための一般的な非侵襲的手法である。
例えば、運動画像脳コンピュータインタフェース(MI-BCI)を通じて測定された特定の認知タスクや運動タスクに関連する隠されたパターンを処理し、理解することが重要である。
脳波信号が非定常性、時間ばらつき、個人の多様性を示すことを考えると、運動画像に基づく脳波(MI-EEG)のタスクを分類することで大きな課題が提示される。
クラス数の増加や個人ごとの自然変動のため、分類精度の良さも極めて困難である。
これらの問題を克服するために,線形分類器であるMiniRocketを用いて特徴を効率よく抽出し,その特徴をアクティビティ認識に利用する脳波モータ画像信号の分類法を提案する。
さらに、ベースラインとして機能する畳み込みニューラルネットワーク(CNN)とLong Short Term Memory(LSTM)アーキテクチャに基づく新しいディープラーニングを提案し、MiniRocketの機能による分類が計算コストの低い最高のディープラーニングモデルよりも高い性能を達成することを示した。
PhysioNetデータセットは提案手法の性能評価に使用された。
提案されたモデルは、MiniRocketとCNN-LSTMでそれぞれ98.63%と98.06%の平均精度を達成した。
提案手法は運動画像脳波の精度を大幅に向上させ,MI-EEGの特徴抽出と分類に関する新たな知見を提供する。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
脳-コンピュータインタフェース(BCI)は、脳波信号を用いてデバイスを直接神経制御する。
脳波に基づく運動画像(MI)分類のための従来の機械学習手法は、手動の特徴抽出やノイズに対する感受性といった課題に遭遇する。
本稿では,これらの制限を克服するために改良型トランスフォーマーとTCNを用いたディープラーニングフレームワークであるEEGEncoderを紹介する。
論文 参考訳(メタデータ) (2024-04-23T09:51:24Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
本稿では,3次元畳み込みニューラルネットワーク(CNN)と長期記憶ネットワーク(LSTM)を組み合わせて運動画像(MI)信号を分類するモデルを提案する。
実験の結果、このモデルは、BCIコンペティションIVデータセット2aの分類精度92.7%、F1スコア0.91に達した。
このモデルにより、ユーザの運動像意図の分類精度が大幅に向上し、自律走行車や医療リハビリテーションといった新興分野における脳-コンピュータインタフェースの応用可能性が改善された。
論文 参考訳(メタデータ) (2023-12-20T03:38:24Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
トレーニングされたT1クラス畳み込みニューラルネットワーク(CNN)モデルを使用して、運動画像の識別を成功させる能力を調べる。
理論的には、モデルが正確にトレーニングされた場合、クラスを特定し、それに従ってラベル付けすることが可能になる。
CNNモデルは復元され、より小さなサンプルデータを使用して同じ種類の運動画像データを特定するために使用される。
論文 参考訳(メタデータ) (2022-05-31T17:09:46Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)システムは、コミュニケーションと制御の代替手段を提供するためにますます採用されています。
信頼できるBCIシステムを得るには、脳信号からMIを正確に分類することが不可欠です。
ディープラーニングアプローチは、標準的な機械学習技術の有効な代替手段として現れ始めている。
論文 参考訳(メタデータ) (2021-05-17T14:57:13Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
本稿では,頭皮脳波に基づく極めて高精度かつ応答性の高い運動画像(MI)認識を目的とした,新しい深層学習手法を提案する。
注意機構を持つBiLSTMは、生の脳波信号から関連する特徴を導出する。
0.4秒検出フレームワークは、それぞれ98.81%と94.64%の精度で、個人およびグループレベルのトレーニングに基づいて効率的かつ効率的な予測を行っている。
論文 参考訳(メタデータ) (2020-05-02T10:03:40Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
運動画像(MI)は、信号の発端から運動機能の回復や回復に一般的に用いられる。
本研究では,BFR-CNN(Band-power Feature Refining Convolutional Neural Network)を提案する。
論文 参考訳(メタデータ) (2020-02-04T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。