論文の概要: Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition
- arxiv url: http://arxiv.org/abs/2005.00777v3
- Date: Thu, 2 Dec 2021 09:10:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:16:29.382226
- Title: Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition
- Title(参考訳): ヒト運動画像認識のための注意型BiLSTM-GCNによる深部特徴抽出
- Authors: Yimin Hou, Shuyue Jia, Xiangmin Lun, Shu Zhang, Tao Chen, Fang Wang,
Jinglei Lv
- Abstract要約: 本稿では,頭皮脳波に基づく極めて高精度かつ応答性の高い運動画像(MI)認識を目的とした,新しい深層学習手法を提案する。
注意機構を持つBiLSTMは、生の脳波信号から関連する特徴を導出する。
0.4秒検出フレームワークは、それぞれ98.81%と94.64%の精度で、個人およびグループレベルのトレーニングに基づいて効率的かつ効率的な予測を行っている。
- 参考スコア(独自算出の注目度): 9.039355687614076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognition accuracy and response time are both critically essential ahead of
building practical electroencephalography (EEG) based brain-computer interface
(BCI). Recent approaches, however, have either compromised in the
classification accuracy or responding time. This paper presents a novel deep
learning approach designed towards remarkably accurate and responsive motor
imagery (MI) recognition based on scalp EEG. Bidirectional Long Short-term
Memory (BiLSTM) with the Attention mechanism manages to derive relevant
features from raw EEG signals. The connected graph convolutional neural network
(GCN) promotes the decoding performance by cooperating with the topological
structure of features, which are estimated from the overall data. The
0.4-second detection framework has shown effective and efficient prediction
based on individual and group-wise training, with 98.81% and 94.64% accuracy,
respectively, which outperformed all the state-of-the-art studies. The
introduced deep feature mining approach can precisely recognize human motion
intents from raw EEG signals, which paves the road to translate the EEG based
MI recognition to practical BCI systems.
- Abstract(参考訳): 脳波(EEG)ベースの脳-コンピュータインタフェース(BCI)を構築するためには、認識精度と応答時間の両方が不可欠である。
しかし、近年のアプローチは、分類精度や応答時間において妥協している。
本稿では,頭皮脳波に基づく極めて高精度かつ応答性の高い運動画像認識を目的とした新しい深層学習手法を提案する。
Bidirectional Long Short-Term Memory (BiLSTM) with the Attention mechanismは、生の脳波信号から関連する特徴を導出する。
連結グラフ畳み込みニューラルネットワーク(gcn)は、全体のデータから推定される特徴の位相構造に協調して復号性能を向上させる。
0.4秒検出フレームワークは、それぞれ98.81%と94.64%の精度で、個人およびグループ単位でのトレーニングに基づいて効果的かつ効率的な予測を示し、最先端の研究を上回っている。
導入された深層特徴マイニングアプローチは、脳波に基づくmi認識を実用的なbciシステムに翻訳する道を開く、生の脳波信号から人間の動作意図を正確に認識することができる。
関連論文リスト
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
本研究では,脳波信号の空間依存性と時間スペクトルの相対性を表す分布に基づく不確実性手法を提案する。
グラフ混合手法は、遅延接続エッジを強化し、ノイズラベル問題を緩和するために用いられる。
感情認識タスクにおいて、SEEDとSEEDIVという2つの広く使われているデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-10-22T03:47:11Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals [8.775745069873558]
前回の研究では、脳波(EEG)信号は脳波電極のトポロジカルな関係を考慮していない。
グラフ畳み込みニューラルネットワーク(GCN: Graph Convolutional Neural Network)の新たな構造である、注意に基づくグラフ残差ネットワークが、人間の運動意図を検出するために提示された。
生の脳波運動画像における深部ネットワークに関する劣化問題に対処するために, フルアテンションアーキテクチャによる深部学習を導入した。
論文 参考訳(メタデータ) (2020-06-25T09:29:48Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
運動画像(MI)は、信号の発端から運動機能の回復や回復に一般的に用いられる。
本研究では,BFR-CNN(Band-power Feature Refining Convolutional Neural Network)を提案する。
論文 参考訳(メタデータ) (2020-02-04T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。