論文の概要: Retrieval Enhanced Feedback via In-context Neural Error-book
- arxiv url: http://arxiv.org/abs/2508.16313v2
- Date: Tue, 26 Aug 2025 04:08:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 13:17:04.044203
- Title: Retrieval Enhanced Feedback via In-context Neural Error-book
- Title(参考訳): In-context Neural Error-bookによる検索フィードバックの強化
- Authors: Jongyeop Hyun, Bumsoo Kim,
- Abstract要約: 本稿では,Retrieval-Enhanced Feedback via In-student Neural Error-context bookを提案する。
REFINEは、エラーを体系的に構造化し、ターゲットとするフィードバックを提供する。
その結果,大幅な高速化,計算コストの削減,一般化の成功が示された。
- 参考スコア(独自算出の注目度): 8.862195491555575
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は推論能力を大幅に改善し、文脈内学習(ICL)が再訓練なしに適応するための重要な技術として登場した。
これまでの研究は正しい例の活用に重点を置いていたが、最近の研究では、エラーから学習してパフォーマンスを向上させることの重要性を強調している。
しかし、既存の手法では、特にMLLM(Multimodal Large Language Models)では、エラーを分析し軽減するための構造化されたフレームワークが欠けている。
この問題に対処するために、我々はREFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book を提案する。
REFINEは、構造化されたフィードバック(Feed-Target、Feed-Check、Feed-Path)を構築するための3つの体系的なクエリを導入している。
冗長な検索に依存する従来のアプローチとは異なり、REFINEは構造化されたフィードバック検索を最適化し、推論効率、トークン使用率、スケーラビリティを改善している。
その結果, 計算コストの削減, 一般化の成功, マルチモーダル推論の強化に対するREFINEの可能性が示された。
関連論文リスト
- Automated Optimization Modeling through Expert-Guided Large Language Model Reasoning [43.63419208391747]
本稿では,最適化プロセスを自動化するチェーン・オブ・シント推論を通じて,専門家レベルの最適化モデリングの原則を活用する新しいフレームワークを提案する。
また、ロジスティクス領域からの新しい最適化モデリングベンチマークであるLogiORを導入し、標準化されたアノテーションに関するより複雑な問題を含む。
論文 参考訳(メタデータ) (2025-08-20T04:14:54Z) - AURORA: Augmented Understanding via Structured Reasoning and Reinforcement Learning for Reference Audio-Visual Segmentation [113.75682363364004]
AURORAは、参照音声視覚セグメント化における真の推論と言語理解を強化するために設計されたフレームワークである。
AURORAはRef-AVSベンチマークの最先端性能を達成し、非参照セグメンテーションに効果的に一般化する。
論文 参考訳(メタデータ) (2025-08-04T07:47:38Z) - Rethinking Prompt Optimization: Reinforcement, Diversification, and Migration in Blackbox LLMs [10.434732630519377]
本稿では,フィードバック機構の強化を主眼とした新しい自動プロンプト最適化(APO)フレームワークを提案する。
LLM生成したフィードバックに固有のノイズを軽減するため,フィードバックの多様化という手法を導入する。
我々のアプローチは、強いベースラインを一貫して上回り、大幅な精度の向上、より高速な収束、計算コストの低減を実現している。
論文 参考訳(メタデータ) (2025-07-14T00:20:14Z) - From Ambiguity to Accuracy: The Transformative Effect of Coreference Resolution on Retrieval-Augmented Generation systems [6.762635083456022]
RAGに基づくシステムにおいて,エンティティコアが文書検索と生成性能にどのように影響するかを検討する。
コア参照の解決により検索効率が向上し,質問応答性能(QA)が向上することが実証された。
本研究の目的は、知識集約型AIアプリケーションにおける検索と生成を改善するためのガイダンスを提供することである。
論文 参考訳(メタデータ) (2025-07-10T15:26:59Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
そこで,Dialectic-RAG(Dialectic-RAG, DRAG)を提案する。
我々は、文脈内学習戦略と、より小さなモデルをインストラクションするための実演の構築の両方において、我々のフレームワークが与える影響を示す。
論文 参考訳(メタデータ) (2025-04-07T06:55:15Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
本研究では、効果的なアンラーニングのためのデータ拡張および微調整パイプラインであるReLearnを提案する。
このフレームワークでは、知識レベルの保存を測定するために、知識獲得率(KFR)と知識保持率(KRR)を導入している。
実験の結果,ReLearnは高品質な出力を保ちながら,目標とするリセットを実現することができた。
論文 参考訳(メタデータ) (2025-02-16T16:31:00Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。