論文の概要: From Ambiguity to Accuracy: The Transformative Effect of Coreference Resolution on Retrieval-Augmented Generation systems
- arxiv url: http://arxiv.org/abs/2507.07847v1
- Date: Thu, 10 Jul 2025 15:26:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.460003
- Title: From Ambiguity to Accuracy: The Transformative Effect of Coreference Resolution on Retrieval-Augmented Generation systems
- Title(参考訳): あいまいさから正確さへ:検索・拡張生成システムにおける相関分解能の変換効果
- Authors: Youngjoon Jang, Seongtae Hong, Junyoung Son, Sungjin Park, Chanjun Park, Heuiseok Lim,
- Abstract要約: RAGに基づくシステムにおいて,エンティティコアが文書検索と生成性能にどのように影響するかを検討する。
コア参照の解決により検索効率が向上し,質問応答性能(QA)が向上することが実証された。
本研究の目的は、知識集約型AIアプリケーションにおける検索と生成を改善するためのガイダンスを提供することである。
- 参考スコア(独自算出の注目度): 6.762635083456022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a crucial framework in natural language processing (NLP), improving factual consistency and reducing hallucinations by integrating external document retrieval with large language models (LLMs). However, the effectiveness of RAG is often hindered by coreferential complexity in retrieved documents, introducing ambiguity that disrupts in-context learning. In this study, we systematically investigate how entity coreference affects both document retrieval and generative performance in RAG-based systems, focusing on retrieval relevance, contextual understanding, and overall response quality. We demonstrate that coreference resolution enhances retrieval effectiveness and improves question-answering (QA) performance. Through comparative analysis of different pooling strategies in retrieval tasks, we find that mean pooling demonstrates superior context capturing ability after applying coreference resolution. In QA tasks, we discover that smaller models benefit more from the disambiguation process, likely due to their limited inherent capacity for handling referential ambiguity. With these findings, this study aims to provide a deeper understanding of the challenges posed by coreferential complexity in RAG, providing guidance for improving retrieval and generation in knowledge-intensive AI applications.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、自然言語処理(NLP)において重要なフレームワークとして登場し、外部文書検索とLLMを統合することで、事実整合性の向上と幻覚の低減を実現している。
しかしながら、RAGの有効性は、検索された文書の中核的な複雑さによって妨げられ、文脈内学習を妨害する曖昧さが引き起こされることが多い。
本研究では,文書検索とRAGに基づくシステムにおいて,エンティティ・コア推論が文書検索と生成性能の両方にどう影響するかを系統的に検討し,検索関連性,文脈理解,全体の応答品質に着目した。
コア参照の解決により検索効率が向上し,質問応答性能(QA)が向上することが実証された。
検索タスクにおける異なるプーリング戦略の比較分析により、コア参照解決の適用により、平均プーリングがより優れたコンテキストキャプチャ能力を示すことが判明した。
QAタスクでは、より小さなモデルの方が曖昧なプロセスの恩恵を受けることが分かりました。
本研究の目的は,知識集約型AIアプリケーションにおける検索と生成を改善するためのガイダンスを提供することである。
関連論文リスト
- Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデルを強化するための強力なパラダイムとして登場した。
RAGは、検索品質、基底忠実度、パイプライン効率、ノイズや逆入力に対する堅牢性といった新しい課題を導入している。
本調査は、RAG研究における現在の知識を集約し、次世代の検索強化言語モデリングシステムの基礎となることを目的としている。
論文 参考訳(メタデータ) (2025-05-28T22:57:04Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
生成情報検索(GenIR)は、文書識別子(ドシデント)生成タスクとして文書検索を定式化する有望なニューラル検索パラダイムである。
既存のGenIRモデルはトークンレベルのミスアライメントに悩まされており、次のトークンを予測するためにトレーニングされたモデルは、ドキュメントレベルの関連性を効果的にキャプチャできないことが多い。
本稿では,トークンレベルのドシデント生成と文書レベルのドシデンス推定をペアのランク付けによる直接最適化により整合するダイレクトドキュメントレバレンス最適化(DDRO)を提案する。
論文 参考訳(メタデータ) (2025-04-07T15:27:37Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
そこで,Dialectic-RAG(Dialectic-RAG, DRAG)を提案する。
我々は、文脈内学習戦略と、より小さなモデルをインストラクションするための実演の構築の両方において、我々のフレームワークが与える影響を示す。
論文 参考訳(メタデータ) (2025-04-07T06:55:15Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
本稿では,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部検索と独自のパラメトリック知識の言語化を動的に決定できるようにする。
近接探索による動的知識源推定を導入し,知識源決定の精度を向上させる。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - QontSum: On Contrasting Salient Content for Query-focused Summarization [22.738731393540633]
クエリ中心の要約(QFS)は、特定のクエリに対処する要約を生成する自然言語処理において難しいタスクである。
本稿では,GARにおけるQFSの役割について述べる。
コントラスト学習を利用したQFSの新しい手法であるQontSumを提案する。
論文 参考訳(メタデータ) (2023-07-14T19:25:35Z) - Better Retrieval May Not Lead to Better Question Answering [59.1892787017522]
システムの性能を改善するための一般的なアプローチは、取得したコンテキストの品質をIRステージから改善することである。
マルチホップ推論を必要とするオープンドメインのQAデータセットであるStrategyQAでは、この一般的なアプローチは驚くほど非効率である。
論文 参考訳(メタデータ) (2022-05-07T16:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。