論文の概要: FAIRWELL: Fair Multimodal Self-Supervised Learning for Wellbeing Prediction
- arxiv url: http://arxiv.org/abs/2508.16748v1
- Date: Fri, 22 Aug 2025 19:03:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.160331
- Title: FAIRWELL: Fair Multimodal Self-Supervised Learning for Wellbeing Prediction
- Title(参考訳): FAIRWELL: 健全な予測のための公平なマルチモーダル自己監督型学習
- Authors: Jiaee Cheong, Abtin Mogharabin, Paul Liang, Hatice Gunes, Sinan Kalkan,
- Abstract要約: 本稿では、以下の3つのメカニズムを用いて、より公平な表現を学習するための新しい主観レベル損失関数を提案する。
我々は,現実の異種医療データセットを3つ評価した。
- 参考スコア(独自算出の注目度): 16.913286294651236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early efforts on leveraging self-supervised learning (SSL) to improve machine learning (ML) fairness has proven promising. However, such an approach has yet to be explored within a multimodal context. Prior work has shown that, within a multimodal setting, different modalities contain modality-unique information that can complement information of other modalities. Leveraging on this, we propose a novel subject-level loss function to learn fairer representations via the following three mechanisms, adapting the variance-invariance-covariance regularization (VICReg) method: (i) the variance term, which reduces reliance on the protected attribute as a trivial solution; (ii) the invariance term, which ensures consistent predictions for similar individuals; and (iii) the covariance term, which minimizes correlational dependence on the protected attribute. Consequently, our loss function, coined as FAIRWELL, aims to obtain subject-independent representations, enforcing fairness in multimodal prediction tasks. We evaluate our method on three challenging real-world heterogeneous healthcare datasets (i.e. D-Vlog, MIMIC and MODMA) which contain different modalities of varying length and different prediction tasks. Our findings indicate that our framework improves overall fairness performance with minimal reduction in classification performance and significantly improves on the performance-fairness Pareto frontier.
- Abstract(参考訳): 自己教師型学習(SSL)を活用して機械学習(ML)の公正性を改善する取り組みは、すでに有望であることが証明されている。
しかし、そのようなアプローチはマルチモーダルな文脈ではまだ検討されていない。
以前の研究は、マルチモーダル設定において、異なるモダリティが他のモダリティの情報を補完できるモダリティ・ユニク情報を含むことを示した。
これを利用して、以下の3つのメカニズムを通してより公平な表現を学習し、分散不変共分散正則化(VICReg)法を適応する、新しい主観レベル損失関数を提案する。
一 自明な解決として保護された属性への依存を減少させる分散項
(二)類似した個人に対する一貫した予測を保証する不変項、及び
三 保護属性に対する相関性を最小限にする共分散項
その結果、FAIRWELLと呼ばれる損失関数は、マルチモーダル予測タスクにおける公平性を実現することを目的としている。
我々は,異なる長さと異なる予測タスクを含む実世界の異種医療データセット(D-Vlog,MIMIC,MODMA)について,本手法の評価を行った。
以上の結果から,本フレームワークは分類性能を最小限に抑えながら全体的な公正性向上を実現し,パレートフロンティアの性能向上に寄与することが示唆された。
関連論文リスト
- Unified modality separation: A vision-language framework for unsupervised domain adaptation [60.8391821117794]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインでトレーニングされたモデルが新しいラベル付きドメインを扱うことを可能にする。
本稿では,モダリティ固有成分とモダリティ不変成分の両方に対応可能な統一モダリティ分離フレームワークを提案する。
提案手法は,9倍の計算効率で最大9%の性能向上を実現している。
論文 参考訳(メタデータ) (2025-08-07T02:51:10Z) - MIRRAMS: Learning Robust Tabular Models under Unseen Missingness Shifts [2.5357049657770516]
欠落した値はしばしばデータ収集ポリシーのバリエーションを反映し、時間や場所によって変化することがある。
このようなトレーニングとテストインプットの間の不足分布の変化は、堅牢な予測性能を達成する上で大きな課題となる。
この課題に対処するために設計された,新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-11T03:03:30Z) - Confidence-Aware Self-Distillation for Multimodal Sentiment Analysis with Incomplete Modalities [15.205192581534973]
マルチモーダル感情分析は、マルチモーダルデータを通して人間の感情を理解することを目的としている。
既存のモダリティの欠如を扱う方法は、データ再構成や共通部分空間投影に基づいている。
マルチモーダルな確率的埋め込みを効果的に組み込んだ信頼性認識型自己蒸留(CASD)戦略を提案する。
論文 参考訳(メタデータ) (2025-06-02T09:48:41Z) - Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
大規模マルチモーダルモデル (LMM) は、様々な研究課題において変換可能性を示している。
以上の結果から,LMMはゼロショット学習,解釈可能性,未修正入力の処理に長所があることが示唆された。
本稿では,目標外予測問題を効果的に緩和するChain-of-Thought拡張プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T16:26:56Z) - Maturity-Aware Active Learning for Semantic Segmentation with
Hierarchically-Adaptive Sample Assessment [18.65352271757926]
Maturity-Aware Distribution Breakdown-based Active Learning (MADBAL)は、異なる「サンプル」の定義を共同で考慮したAL手法である。
MADBALは初期のALステージでも大幅なパフォーマンス向上を実現しているため、トレーニングの負担を大幅に削減できる。
実験で検証したように,都市景観とPASCALVOCデータセットの最先端手法よりも優れています。
論文 参考訳(メタデータ) (2023-08-28T21:13:04Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Metric-Learning-Assisted Domain Adaptation [18.62119154143642]
多くの既存ドメインアライメント手法は、ソースとターゲットの分布のアライメントとともに、低いソースリスクが低いターゲットリスクを意味すると仮定している。
本稿では,特徴整合性向上を支援するために,新しい三重項損失を用いたメタラーニング支援ドメイン適応法(MLA-DA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T04:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。