論文の概要: Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural Process
- arxiv url: http://arxiv.org/abs/2508.17097v1
- Date: Sat, 23 Aug 2025 17:48:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.341312
- Title: Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural Process
- Title(参考訳): 1つの石を持つ2羽の鳥:グラフ機能的ニューラルプロセスによる不確かさの定量化と解釈性の向上
- Authors: Lingkai Kong, Haotian Sun, Yuchen Zhuang, Haorui Wang, Wenhao Mu, Chao Zhang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフデータに強力なツールである。
しかし、それらの予測は誤校正され、解釈性に欠ける。
本稿では,新しい不確実性と解釈可能なグラフ分類モデルを提案する。
- 参考スコア(独自算出の注目度): 27.760002432327962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) are powerful tools on graph data. However, their predictions are mis-calibrated and lack interpretability, limiting their adoption in critical applications. To address this issue, we propose a new uncertainty-aware and interpretable graph classification model that combines graph functional neural process and graph generative model. The core of our method is to assume a set of latent rationales which can be mapped to a probabilistic embedding space; the predictive distribution of the classifier is conditioned on such rationale embeddings by learning a stochastic correlation matrix. The graph generator serves to decode the graph structure of the rationales from the embedding space for model interpretability. For efficient model training, we adopt an alternating optimization procedure which mimics the well known Expectation-Maximization (EM) algorithm. The proposed method is general and can be applied to any existing GNN architecture. Extensive experiments on five graph classification datasets demonstrate that our framework outperforms state-of-the-art methods in both uncertainty quantification and GNN interpretability. We also conduct case studies to show that the decoded rationale structure can provide meaningful explanations.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータに強力なツールである。
しかし、それらの予測は誤校正され、解釈可能性に欠け、重要なアプリケーションでの採用を制限する。
この問題に対処するために,グラフ関数型ニューラルプロセスとグラフ生成モデルを組み合わせた,不確実性と解釈可能なグラフ分類モデルを提案する。
本手法の中核は,確率的埋め込み空間にマッピング可能な潜在有理数集合を仮定することであり,確率的相関行列を学習することにより,分類器の予測分布をそのような有理数埋め込み上で条件付けする。
グラフ生成器は、モデル解釈可能性のための埋め込み空間から有理数のグラフ構造をデコードする。
効率的なモデルトレーニングには、よく知られた期待-最大化(EM)アルゴリズムを模倣した交互最適化手法を採用する。
提案手法は汎用的であり,既存のGNNアーキテクチャにも適用可能である。
5つのグラフ分類データセットの大規模な実験により、我々のフレームワークは不確実性定量化とGNNの解釈可能性の両方において最先端の手法より優れていることが示された。
また、デコードされた有理構造が意味のある説明を提供することができることを示すケーススタディも実施する。
関連論文リスト
- Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
カーネルグラフニューラルネットワーク(KGNN)の設計と学習の改善
我々はLGA(Latent graph augmentation)と呼ばれる新しい構造保存グラフデータ拡張法を開発した。
提案モデルは,最先端のグラフ表現学習フレームワークに匹敵する,あるいは時として優れる性能を実現する。
論文 参考訳(メタデータ) (2023-10-17T14:04:22Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - Globally Interpretable Graph Learning via Distribution Matching [12.885580925389352]
我々は、まだ十分に研究されていない重要な質問に答えることを目指している。グラフ学習手順のグローバルな解釈を提供するには、どうすればよいのか?
我々は,この問題を,学習過程を支配する高レベルかつ人間の知能なパターンを蒸留することを目的とした,グローバルな解釈可能なグラフ学習として定式化する。
本稿では,解釈に基づいて学習したモデルの忠実度を評価するために,新しいモデル忠実度尺度を提案する。
論文 参考訳(メタデータ) (2023-06-18T00:50:36Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
時系列予測は統計学、経済学、コンピュータ科学において広く研究されている。
本研究では,グラフが未知である場合,グラフニューラルネットワーク(GNN)を同時に学習することを提案する。
経験的評価は、グラフ構造学習のための最近提案されたバイレベル学習アプローチよりも、よりシンプルで効率的で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-01-18T03:36:33Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。