論文の概要: ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
- arxiv url: http://arxiv.org/abs/2508.17234v1
- Date: Sun, 24 Aug 2025 07:19:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.418938
- Title: ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
- Title(参考訳): ClaimGen-CN: 大規模中国の法定クレーム生成データセット
- Authors: Siying Zhou, Yiquan Wu, Hui Chen, Xavier Hu, Kun Kuang, Adam Jatowt, Ming Hu, Chunyan Zheng, Fei Wu,
- Abstract要約: 法的な主張は、事件における原告の要求を言及し、法的理由づけと事件解決を導くのに不可欠である。
本稿では,その事例の事実に基づく法的クレーム生成の問題について考察する。
われわれは,中国法定クレーム生成タスクの最初のデータセットであるClaymGen-CNを構築した。
- 参考スコア(独自算出の注目度): 56.79698529022327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
- Abstract(参考訳): 法的な主張は、事件における原告の要求を言及し、法的理由づけと事件解決を導くのに不可欠である。
多くの研究は、法律専門家の効率向上に重点を置いているが、非専門職(原告など)を支援する研究は未調査のままである。
本稿では,その事例の事実に基づく法的クレーム生成の問題について考察する。
まず,中国初の法的クレーム生成タスクのデータセットであるClaymGen-CNを,実世界の諸訴訟から構築する。
さらに,実感と明快さの2つの重要な側面を含む,生成したクレームを評価するための評価基準を設計する。
これに基づいて、我々は最先端の汎用および法的ドメイン大言語モデルの包括的なゼロショット評価を行う。
本研究は,本領域において,よりターゲットを絞った開発の必要性を指摘し,現実的精度と表現的明快さの限界を強調した。
この重要なタスクのさらなる探索を奨励するため、データセットを公開します。
関連論文リスト
- GLARE: Agentic Reasoning for Legal Judgment Prediction [60.13483016810707]
法学分野では、法的判断予測(LJP)がますます重要になっている。
既存の大規模言語モデル (LLM) には、法的な知識が不足しているため、推論に不十分な重大な問題がある。
GLAREは,異なるモジュールを呼び出し,重要な法的知識を動的に獲得するエージェント的法的推論フレームワークである。
論文 参考訳(メタデータ) (2025-08-22T13:38:12Z) - LexPro-1.0 Technical Report [19.83460019437367]
高度に専門化された中国の法律ドメイン用に設計された大規模言語モデルであるLexPro-1.0について紹介する。
これを解決するために、まず中国31州から20種類以上の犯罪を対象とする数百万件の法的文書を収集し、モデルトレーニングを行った。
このモデルは、さらなる監督なしに大規模な強化学習を行い、推論能力と説明可能性の向上を強調している。
論文 参考訳(メタデータ) (2025-03-10T05:54:23Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [16.29803062332164]
本稿では,大規模言語モデルによる専門家による関連判断の生成を支援する,数ショットのアプローチを提案する。
提案手法は,人間のアノテータのワークフローを模倣して,判断過程をいくつかの段階に分解する。
また、解釈可能なデータラベリングを保証し、関連性評価プロセスにおける透明性と明確性を提供します。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-fine textual entailment dataset built on natural claim and evidence pairs from Wikipedia。
標準クレームレベルのエンターメントに加えて、WiCEはクレームのサブ文単位に対するエンターメント判断を提供する。
我々のデータセットの真のクレームは、既存のモデルで対処できない検証と検索の問題に挑戦することを含んでいる。
論文 参考訳(メタデータ) (2023-03-02T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。