論文の概要: Federated Reinforcement Learning for Runtime Optimization of AI Applications in Smart Eyewears
- arxiv url: http://arxiv.org/abs/2508.17262v1
- Date: Sun, 24 Aug 2025 09:06:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.433302
- Title: Federated Reinforcement Learning for Runtime Optimization of AI Applications in Smart Eyewears
- Title(参考訳): スマートアイウェアにおけるAIアプリケーションの実行時最適化のためのフェデレーション強化学習
- Authors: Hamta Sedghani, Abednego Wamuhindo Kambale, Federica Filippini, Francesca Palermo, Diana Trojaniello, Danilo Ardagna,
- Abstract要約: 拡張現実技術は、医療、エンターテイメント、教育などの分野を変革し、スマートアイウェア(SEW)と人工知能(AI)が重要な役割を担っている。
フェデレーション強化学習(FRL)フレームワークを提案し、複数のエージェントがデータのプライバシを保護しながら協調的にトレーニングできるようにする。
- 参考スコア(独自算出の注目度): 3.844552549661456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended reality technologies are transforming fields such as healthcare, entertainment, and education, with Smart Eye-Wears (SEWs) and Artificial Intelligence (AI) playing a crucial role. However, SEWs face inherent limitations in computational power, memory, and battery life, while offloading computations to external servers is constrained by network conditions and server workload variability. To address these challenges, we propose a Federated Reinforcement Learning (FRL) framework, enabling multiple agents to train collaboratively while preserving data privacy. We implemented synchronous and asynchronous federation strategies, where models are aggregated either at fixed intervals or dynamically based on agent progress. Experimental results show that federated agents exhibit significantly lower performance variability, ensuring greater stability and reliability. These findings underscore the potential of FRL for applications requiring robust real-time AI processing, such as real-time object detection in SEWs.
- Abstract(参考訳): 拡張現実技術は、医療、エンターテイメント、教育などの分野を変革し、スマートアイウェア(SEW)と人工知能(AI)が重要な役割を担っている。
しかし、SEWは計算能力、メモリ、バッテリ寿命に固有の制限に直面し、計算を外部サーバにオフロードすることは、ネットワーク条件とサーバのワークロード変動によって制約される。
これらの課題に対処するため,フェデレーション強化学習(FRL)フレームワークを提案する。
我々は同期型と非同期型のフェデレーション戦略を実装し、モデルが一定間隔で集約されるか、エージェントの進行状況に基づいて動的に集約される。
実験の結果, フェデレート剤の安定性は著しく低下し, 安定性と信頼性が向上した。
これらの結果は、SEWにおけるリアルタイムオブジェクト検出など、堅牢なリアルタイムAI処理を必要とするアプリケーションに対するFRLの可能性を強調している。
関連論文リスト
- Open-Source LLM-Driven Federated Transformer for Predictive IoV Management [1.8024397171920885]
Federated Prompt-d Traffic Transformer (FPoTT)は、オープンソースのLarge Language Modelsを利用して予測IoV管理を行う新しいフレームワークである。
FPoTTは動的プロンプト最適化機構を導入し、テキストプロンプトを反復的に洗練して軌道予測を強化する。
このアーキテクチャは、リアルタイム推論のための軽量エッジモデルと、グローバルインテリジェンスを維持するためのクラウドベースのLLMを組み合わせた、二重層フェデレーション学習パラダイムを採用している。
論文 参考訳(メタデータ) (2025-05-01T16:54:21Z) - Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning [39.73152182572741]
本稿では、SFLAM(Quantized Split Federated Fine-Tuning Large AI Model)と呼ばれる新しいフレームワークを提案する。
エッジデバイスとサーバ間のトレーニング負荷を分割することで、SFLAMはデバイス上の大規模なモデルの操作を容易にすることができる。
SFLAMは、トレーニング効率を高めるために、量子化管理、電力制御、帯域幅割り当て戦略を取り入れている。
論文 参考訳(メタデータ) (2025-04-12T07:55:11Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Energy-Efficient and Real-Time Sensing for Federated Continual Learning via Sample-Driven Control [21.871879862642235]
リアルタイムセンシング(RTS)システムは、現実のダイナミクスに適応するために、継続的に知識を取得し、更新し、統合し、適用しなければならない。
本稿では,データ分散が人工知能(AI)モデルの性能に与える影響について検討する。
本研究では,RTS機能を有するモバイルエッジネットワークを対象としたSCFL(Sample-driven Control for Federated Continual Learning)技術を開発した。
論文 参考訳(メタデータ) (2023-10-11T13:50:28Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - FedSup: A Communication-Efficient Federated Learning Fatigue Driving
Behaviors Supervision Framework [10.38729333916008]
FedSupは、プライバシーと効率的な疲労検出のためのクライアントエッジクラウドフレームワークです。
FedSupは、フェデレーション学習技術にインスパイアされ、クライアント、エッジ、クラウドサーバー間のコラボレーションをインテリジェントに活用します。
論文 参考訳(メタデータ) (2021-04-25T07:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。