論文の概要: DeepCFD: Efficient near-ground airfoil lift coefficient approximation with deep convolutional neural networks
- arxiv url: http://arxiv.org/abs/2508.17278v1
- Date: Sun, 24 Aug 2025 09:58:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.44189
- Title: DeepCFD: Efficient near-ground airfoil lift coefficient approximation with deep convolutional neural networks
- Title(参考訳): DeepCFD:ディープ畳み込みニューラルネットワークを用いた高効率近地翼リフト係数近似
- Authors: Mohammad Amin Esabat, Saeed Jaamei, Fatemeh Asadi,
- Abstract要約: VGG法は地上近傍の翼の昇降抵抗係数を予測するために用いられる。
VGG法が他の手法よりも優れているのは、その結果が他のCNN法よりも正確である点である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: . Predicting and calculating the aerodynamic coefficients of airfoils near the ground with CFD software requires much time. However, the availability of data from CFD simulation results and the development of new neural network methods have made it possible to present the simulation results using methods like VGG, a CCN neural network method. In this article, lift-to-drag coefficients of airfoils near the ground surface are predicted with the help of a neural network. This prediction can only be realized by providing data for training and learning the code that contains information on the lift-to-drag ratio of the primary data and images related to the airfoil cross-section, which are converted into a matrix. One advantage of the VGG method over other methods is that its results are more accurate than those of other CNN methods.
- Abstract(参考訳): と。
CFDソフトウェアを用いて地上付近の翼の空力係数の予測と計算には多くの時間を要する。
しかし、CFDシミュレーションの結果から得られるデータと、新しいニューラルネットワーク法の開発により、CCNニューラルネットワーク法であるVGGのような手法を用いてシミュレーション結果を提示することが可能になった。
本稿では, ニューラルネットワークを用いて, 地表面近傍の翼の昇降抵抗係数を予測した。
この予測は、一次データのリフト・アンド・ドラッグ比の情報を含むコードと、翼断面に関連する画像とをマトリックスに変換して学習するためのデータを提供することによってのみ実現できる。
VGG法が他の手法よりも優れているのは、その結果が他のCNN法よりも正確である点である。
関連論文リスト
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
本稿では,伝送学習によるシミュレーションと計測データを組み合わせたニューラルネットワークに基づく非線形手法を提案する。
最初のステップでは、ニューラルネットワークがシミュレーションデータに基づいてトレーニングされ、分散量の空間的特徴を学習する。
第2のステップは、ニューラルネットワークモデル全体の小さなサブセットを再トレーニングするだけで、シミュレーションと測定の間の体系的なエラーを修正するために、測定データ上での変換学習である。
論文 参考訳(メタデータ) (2025-07-28T07:21:46Z) - Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework [0.7223509567556214]
本研究では,深層学習を用いたシミュレーションの品質向上により,流体力学問題の空間的離散化誤差を低減する手法を提案する。
我々は、粗いグリッドの離散化に投射した後、細粒度のデータでモデルをフィードする。
我々は、セル中心からフェイス値への速度を補間するフィードフォワードニューラルネットワークにより、対流項のデフォルトの差分スキームを置換し、ダウンサンプリングされた微細グリッドデータをよく近似する速度を生成する。
論文 参考訳(メタデータ) (2024-05-13T02:59:50Z) - Finite Volume Features, Global Geometry Representations, and Residual
Training for Deep Learning-based CFD Simulation [8.472186259556597]
グラフニューラルネットワーク(GNN)に基づくCFD法が提案されている。
本研究は,最短ベクトル(SV)と方向統合距離(DID)の2つの新しい幾何学的表現を提案する。
実験結果から, SV, DID, FVF, 残留訓練は, 現行GNN方式の予測誤差を最大41%低減できることがわかった。
論文 参考訳(メタデータ) (2023-11-24T13:19:06Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
本稿では,アラモサキャニオン橋のCNNアルゴリズムを実構造として提案する。
3つの異なるCNNモデルは、1つと2つの故障したセンサーを予測するものとされた。
畳み込み層を追加することによりモデルの精度が向上した。
論文 参考訳(メタデータ) (2022-04-11T23:24:03Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。