論文の概要: TANDEM: Temporal Attention-guided Neural Differential Equations for Missingness in Time Series Classification
- arxiv url: http://arxiv.org/abs/2508.17519v1
- Date: Sun, 24 Aug 2025 20:59:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.565906
- Title: TANDEM: Temporal Attention-guided Neural Differential Equations for Missingness in Time Series Classification
- Title(参考訳): TANDEM:時系列分類における時間的注意誘導型ニューラル微分方程式
- Authors: YongKyung Oh, Dong-Young Lim, Sungil Kim, Alex Bui,
- Abstract要約: TANDEMは注意誘導型ニューラルネットワーク微分方程式フレームワークで、時系列データを欠落した値で効果的に分類する。
TANDEMを30のベンチマークデータセットと実世界の医療データセットで評価した。
- 参考スコア(独自算出の注目度): 13.404503606887717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handling missing data in time series classification remains a significant challenge in various domains. Traditional methods often rely on imputation, which may introduce bias or fail to capture the underlying temporal dynamics. In this paper, we propose TANDEM (Temporal Attention-guided Neural Differential Equations for Missingness), an attention-guided neural differential equation framework that effectively classifies time series data with missing values. Our approach integrates raw observation, interpolated control path, and continuous latent dynamics through a novel attention mechanism, allowing the model to focus on the most informative aspects of the data. We evaluate TANDEM on 30 benchmark datasets and a real-world medical dataset, demonstrating its superiority over existing state-of-the-art methods. Our framework not only improves classification accuracy but also provides insights into the handling of missing data, making it a valuable tool in practice.
- Abstract(参考訳): 時系列分類において欠落したデータを扱うことは、様々な領域において重要な課題である。
従来の手法は、しばしば計算に頼り、バイアスを発生させたり、根底にある時間的ダイナミクスを捉えなかったりする。
本稿では,注意誘導型ニューラルネットワーク微分方程式フレームワークであるTANDEM(Temporal Attention-guided Neural Differential Equations for Missingness)を提案する。
提案手法は,新しいアテンション機構を通じて生観測,補間制御経路,連続潜時ダイナミクスを統合し,データの最も情報性の高い側面に焦点を絞ることができる。
TANDEMを30のベンチマークデータセットと実世界の医療データセットで評価し、既存の最先端手法よりも優れていることを示す。
我々のフレームワークは、分類精度を向上するだけでなく、欠落したデータの処理に関する洞察も提供しています。
関連論文リスト
- Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data [6.207073888171358]
本稿では,グラフニューラルODEを信頼性と時間認識機構で埋め込んで動的に再構築する手法を提案する。
提案手法は,異なるネットワーク型力学系の実験において検証された。
論文 参考訳(メタデータ) (2024-11-29T14:10:16Z) - An End-to-End Model for Time Series Classification In the Presence of Missing Values [25.129396459385873]
時系列分析では,データ不足による時系列分類が問題となっている。
本研究では,データ計算と表現学習を単一のフレームワーク内で統一するエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-11T19:39:12Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
時空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、AUCスコアが5.8%改善し、トレーニング時間が4.62倍速く、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
我々は,多変量時系列の異なるチャネルにおける行方不明データを再構成することを目的としたGRILというグラフニューラルネットワークアーキテクチャを導入する。
予備的な結果は,本モデルが関連するベンチマーク上での計算処理において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T17:47:10Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Neural ODEs for Informative Missingness in Multivariate Time Series [0.7233897166339269]
例えば、センサデータ、医療、天候といった実践的な応用は、真に連続したデータを生成する。
GRU-Dと呼ばれるディープラーニングモデルは、時系列データにおける情報不足に対処するための初期の試みである。
ニューラルネットワークの新しいファミリーであるNeural ODEsは、連続した時系列データを処理するのに自然で効率的である。
論文 参考訳(メタデータ) (2020-05-20T00:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。