論文の概要: Citizen Centered Climate Intelligence: Operationalizing Open Tree Data for Urban Cooling and Eco-Routing in Indian Cities
- arxiv url: http://arxiv.org/abs/2508.17648v1
- Date: Mon, 25 Aug 2025 04:22:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.627425
- Title: Citizen Centered Climate Intelligence: Operationalizing Open Tree Data for Urban Cooling and Eco-Routing in Indian Cities
- Title(参考訳): 市民中心型気候インテリジェンス:インドの都市における都市冷暖房とエコルートのためのオープンツリーデータ運用
- Authors: Kaushik Ravi, Andreas Brück,
- Abstract要約: この章では、参加型センシング、オープン分析、規範的都市計画ツールを通じて、環境インフラを再想像するスケーラブルで市民中心のフレームワークを提示します。
インド・プーンで応用されたこのフレームワークは,(1)AIセグメンテーションによって強化されたスマートフォンベースの計測ツールキットで樹高,天蓋径,幹径を抽出し,(2)衛星由来の地表面温度を用いて局所冷却を計算するパーセンタイルモデル,(3)木密度,種多様性,累積炭素捕獲に基づく静的環境品質スコアを用いて移動を誘導するエコルーティングエンジンの3つの相互接続モジュールから構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban climate resilience requires more than high-resolution data; it demands systems that embed data collection, interpretation, and action within the daily lives of citizens. This chapter presents a scalable, citizen-centric framework that reimagines environmental infrastructure through participatory sensing, open analytics, and prescriptive urban planning tools. Applied in Pune, India, the framework comprises three interlinked modules: (1) a smartphone-based measurement toolkit enhanced by AI segmentation to extract tree height, canopy diameter, and trunk girth; (2) a percentile-based model using satellite-derived Land Surface Temperature to calculate localized cooling through two new metrics, Cooling Efficacy and Ambient Heat Relief; and (3) an eco-routing engine that guides mobility using a Static Environmental Quality score, based on tree density, species diversity, and cumulative carbon sequestration. Together, these modules form a closed feedback loop where citizens generate actionable data and benefit from personalized, sustainable interventions. This framework transforms open data from a passive repository into an active platform for shared governance and environmental equity. In the face of growing ecological inequality and data centralization, this chapter presents a replicable model for citizen-driven urban intelligence, reframing planning as a co-produced, climate-resilient, and radically local practice.
- Abstract(参考訳): 都市気候の回復には高解像度のデータ以上のものが必要であり、市民の日常生活にデータ収集、解釈、行動を含むシステムを必要とする。
この章では、参加型センシング、オープン分析、規範的都市計画ツールを通じて、環境インフラを再想像するスケーラブルで市民中心のフレームワークを提示します。
インド・プーンで適用されたこのフレームワークは,(1)AIセグメンテーションによって木の高さ,樹冠径,幹径を抽出するために強化されたスマートフォンベースの計測ツールキット,(2)衛星由来の地表面温度を用いたパーセンタイルモデルによる局所冷却の2つの新しい指標による計算,(3)木密度,種多様性,累積炭素沈降に基づく静的環境品質スコアを用いた移動を誘導するエコルーティングエンジンを含む。
これらのモジュールは閉じたフィードバックループを形成し、市民は行動可能なデータを生成し、パーソナライズされ持続可能な介入の恩恵を受ける。
このフレームワークは、オープンデータを受動的リポジトリから、共有ガバナンスと環境エクイティのためのアクティブなプラットフォームに変換する。
環境不平等とデータ中央集権化の増大に直面して、この章では、市民主導の都市知能の再現可能なモデルを示し、共同生産型、耐気候性、過激な地域的実践としての計画を再検討する。
関連論文リスト
- ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
我々は、ERA5の時系列気候データ、NOAAの極度の気象イベントデータ、NASAの衛星画像データを調整するマルチモーダル気候ベンチマークであるClimateBench-Mに貢献する。
また,各データモダリティの下では,天気予報,雷雨警報,作物の分断作業において,競争性能を向上できる簡易かつ強力な生成手法を提案する。
論文 参考訳(メタデータ) (2025-04-10T02:22:23Z) - FREE: The Foundational Semantic Recognition for Modeling Environmental Ecosystems [28.166089112650926]
FREEは利用可能な環境データをテキスト空間にマッピングし、環境科学における従来の予測モデリングタスクを意味認識問題に変換する。
長期予測に使用する場合、FREEは将来予測を強化するために新たに収集した観測を組み込む柔軟性を持つ。
自由は2つの社会的に重要な現実世界の応用の文脈で評価され、デラウェア川流域の河川水温を予測し、イリノイ州とアイオワ州で毎年トウモロコシの収量を予測する。
論文 参考訳(メタデータ) (2023-11-17T00:53:09Z) - Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic
Forecasting [47.1051445072085]
我々は、センサーの依存性モデリングを2つの階層(地域とグローバル)から再考する。
我々は,センサ間のグローバルな依存性を反映するグローバルノードとして,代表的パターンと共通時間パターンを生成する。
ノード表現の現実性の一般化を追求するため、物理データ空間におけるノードとグローバルノードの伝播にMeta GCNを組み込んだ。
論文 参考訳(メタデータ) (2023-09-20T13:08:34Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
天気予報のためのデバイス上のインテリジェンスでは、ローカルなディープラーニングモデルを使用して、集中型クラウドコンピューティングなしで気象パターンを分析する。
本稿では,FedPoD(Federated Prompt Learning for Weather Foundation Models on Devices)を提案する。
FedPoDは、通信効率を維持しながら、高度にカスタマイズされたモデルを得ることができる。
論文 参考訳(メタデータ) (2023-05-23T16:59:20Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
我々は,最適な都市計画を生成するために,人間に指示された新しい深層階層生成モデルを構築した。
最初の段階は、機能ゾーンを発見するために、目標領域の格子に遅延関数をラベル付けすることである。
第2の段階は、都市機能投影を形成するための計画要件を理解することである。
第3の段階は、マルチアテンションを活用して、機能プロジェクションのゾーン・ゾーン・ピア依存関係をモデル化し、グリッドレベルの土地利用構成を生成することである。
論文 参考訳(メタデータ) (2022-12-01T23:06:41Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
本稿では,データアソシエーションにおけるあいまいさを解消するための完全なパイプラインを提案する。
その中核は、測定のエントロピーに応じて探索領域に適応する堅牢な自己調整データアソシエーションである。
ドイツ・カールスルーエ市周辺の都市・農村のシナリオを実データとして評価した。
論文 参考訳(メタデータ) (2022-07-28T12:29:39Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - A Semantic Segmentation Network for Urban-Scale Building Footprint
Extraction Using RGB Satellite Imagery [1.9400948599830012]
都市部は世界のエネルギーの3分の2以上を消費し、世界のCO2排出量の70%以上を占めています。
3チャンネルのRGB衛星画像から建物の足跡のマスクを生成するために、拡張ResNetバックボーンを備えた変更されたDeeplabV3+モジュールを提案します。
3つの標準ベンチマークで最先端のパフォーマンスを達成し,衛星画像の規模,解像度,都市密度に依存しないことを実証した。
論文 参考訳(メタデータ) (2021-04-02T22:32:04Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
気候モデルは、気候変動が気候変動に与える影響を理解する上で重要な役割を担い、気候変動のリスクを軽減し、決定を通知する。
コミュニティアース・システム・モデル (CESM) のような大域的な気候モデルは、大気、陸、海、氷の相互作用を記述する数百万行のコードで非常に複雑である。
私たちの研究は、木に基づくアルゴリズムやディープニューラルネットワークのような確率論的手法を使って、高次元および人為的なデータの統計的に厳密な適合性テストを行います。
論文 参考訳(メタデータ) (2020-10-08T15:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。