論文の概要: Conditioned Human Trajectory Prediction using Iterative Attention Blocks
- arxiv url: http://arxiv.org/abs/2206.14442v1
- Date: Wed, 29 Jun 2022 07:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 02:04:01.293152
- Title: Conditioned Human Trajectory Prediction using Iterative Attention Blocks
- Title(参考訳): イテレーティブアテンションブロックを用いた条件付き人軌道予測
- Authors: Aleksey Postnikov, Aleksander Gamayunov, Gonzalo Ferrer
- Abstract要約: 本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 70.36888514074022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion prediction is key to understand social environments, with direct
applications in robotics, surveillance, etc. We present a simple yet effective
pedestrian trajectory prediction model aimed at pedestrians positions
prediction in urban-like environments conditioned by the environment: map and
surround agents. Our model is a neural-based architecture that can run several
layers of attention blocks and transformers in an iterative sequential fashion,
allowing to capture the important features in the environment that improve
prediction. We show that without explicit introduction of social masks,
dynamical models, social pooling layers, or complicated graph-like structures,
it is possible to produce on par results with SoTA models, which makes our
approach easily extendable and configurable, depending on the data available.
We report results performing similarly with SoTA models on publicly available
and extensible-used datasets with unimodal prediction metrics ADE and FDE.
- Abstract(参考訳): 人間の動きの予測は、ロボット工学や監視など、社会環境を理解するための鍵である。
本研究では, 歩行者の位置予測を目的とした, 簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーのレイヤーを反復的に実行し、予測を改善する環境における重要な特徴をキャプチャできるニューラルネットワークアーキテクチャである。
本稿では,ソーシャルマスク,動的モデル,ソーシャルプール層,複雑なグラフ構造を明示的に導入しなければ,somaモデルと同等の結果が得られることを示す。
我々は,somaモデルと同様に,ユニモーダル予測メトリクス ade と fde を用いた公開および拡張可能なデータセット上で実施する結果を報告する。
関連論文リスト
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
本稿では,歩行者の軌跡を予測する物理に基づくニューラルネットワークを提案する。
我々は、現実的な予測、予測性能、および「解釈可能性」に関するモデルを定量的に質的に評価する。
最初の結果は、合成データセットでのみ訓練されたモデルであっても、最先端の精度よりも現実的で解釈可能な軌道を予測できることを示唆している。
論文 参考訳(メタデータ) (2022-02-06T14:58:09Z) - Graph2Kernel Grid-LSTM: A Multi-Cued Model for Pedestrian Trajectory
Prediction by Learning Adaptive Neighborhoods [10.57164270098353]
本稿では,歩行者地区がデザインに適応しうることを提案することによって,インタラクションモデリングの新しい視点を示す。
我々のモデルは、いくつかの公開テストされた監視ビデオに類似した特徴を照合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-07-03T19:05:48Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。