論文の概要: EMPOWER: Evolutionary Medical Prompt Optimization With Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2508.17703v1
- Date: Mon, 25 Aug 2025 06:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.659461
- Title: EMPOWER: Evolutionary Medical Prompt Optimization With Reinforcement Learning
- Title(参考訳): EMPOWER: 強化学習による進化的医療プロンプト最適化
- Authors: Yinda Chen, Yangfan He, Jing Yang, Dapeng Zhang, Zhenlong Yuan, Muhammad Attique Khan, Jamel Baili, Por Lip Yee,
- Abstract要約: 本稿では,医学的即興性を高める新しい進化的枠組みであるEMPOWERを紹介する。
本手法は,(1)医療用語の注意機構,(2)明確さ,特異性,臨床関連性,事実の正確性を評価する包括的評価アーキテクチャ,(3)臨床理由の整合性を保つコンポーネントレベルの進化的アルゴリズムを包含する。
- 参考スコア(独自算出の注目度): 15.59248443394378
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prompt engineering significantly influences the reliability and clinical utility of Large Language Models (LLMs) in medical applications. Current optimization approaches inadequately address domain-specific medical knowledge and safety requirements. This paper introduces EMPOWER, a novel evolutionary framework that enhances medical prompt quality through specialized representation learning, multi-dimensional evaluation, and structure-preserving algorithms. Our methodology incorporates: (1) a medical terminology attention mechanism, (2) a comprehensive assessment architecture evaluating clarity, specificity, clinical relevance, and factual accuracy, (3) a component-level evolutionary algorithm preserving clinical reasoning integrity, and (4) a semantic verification module ensuring adherence to medical knowledge. Evaluation across diagnostic, therapeutic, and educational tasks demonstrates significant improvements: 24.7% reduction in factually incorrect content, 19.6% enhancement in domain specificity, and 15.3% higher clinician preference in blinded evaluations. The framework addresses critical challenges in developing clinically appropriate prompts, facilitating more responsible integration of LLMs into healthcare settings.
- Abstract(参考訳): プロンプト工学は医学応用における大規模言語モデル(LLM)の信頼性と臨床的有用性に大きな影響を及ぼす。
現在の最適化アプローチでは、ドメイン固有の医療知識と安全性要件が不十分である。
本稿では, 特殊表現学習, 多次元評価, 構造保存アルゴリズムを通じて, 医用プロンプトの品質を高める新しい進化的フレームワークであるEMPOWERを紹介する。
本手法は,(1)医療用語の注意機構,(2)明確さ,特異性,臨床関連性,事実の正確性を評価する総合的な評価アーキテクチャ,(3)臨床理由の整合性を維持するコンポーネントレベルの進化アルゴリズム,(4)医学的知識の定着を保証する意味的検証モジュールを包含する。
診断、治療、教育タスクによる評価は、24.7%の事実的不正な内容の減少、19.6%のドメイン特異性の強化、および15.3%の盲目の評価における臨床医の嗜好の上昇など、大きな改善を示す。
このフレームワークは、臨床に適切なプロンプトを開発する上で重要な課題に対処し、LSMのより責任ある医療環境への統合を促進する。
関連論文リスト
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
医学における大きな言語モデル(LLM)は印象的な能力を実現しているが、体系的で透明で検証可能な推論を行う能力に重大なギャップが残っている。
本稿は、この新興分野に関する最初の体系的なレビューを提供する。
本稿では,学習時間戦略とテスト時間メカニズムに分類した推論強化手法の分類法を提案する。
論文 参考訳(メタデータ) (2025-08-01T14:41:31Z) - Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering [7.092919468004549]
LLM(Large Language Models)は、医学的テキスト理解と生成において重要な機能を示す。
本研究の目的は,LSMの診断精度と臨床推論能力を高めることである。
論文 参考訳(メタデータ) (2025-08-01T03:05:43Z) - Prompt Mechanisms in Medical Imaging: A Comprehensive Survey [18.072753363565322]
深層学習は医療画像に変革をもたらす。
しかし、その臨床導入は、データの不足、分散シフト、堅牢なタスクの一般化の必要性といった課題によって、しばしば妨げられている。
深層学習モデルを導くための重要な戦略として,プロンプトベースの方法論が登場している。
論文 参考訳(メタデータ) (2025-06-28T03:06:25Z) - Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation [0.0]
本研究では,医療におけるLarge Language Models(LLM)の適用について検討する。
我々は、病院固有のデータと統合された検索型RAG(Retrieval-Augmented Generation)による医療意思決定支援と、量子化低ランク適応(QLoRA)を用いた微調整に焦点を当てる。
我々は、患者のプライバシ、データセキュリティ、厳格な臨床検証の必要性、およびそのようなシステムを現実の医療に組み込むための実践的な課題など、倫理的な配慮に目を向ける。
論文 参考訳(メタデータ) (2025-05-06T10:31:54Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
医学的文脈における大きな言語モデル(LLM)の信頼性と精度は依然として重要な懸念点である。
現在の評価手法はロバスト性に欠けることが多く、LLMの性能を総合的に評価することができない。
我々は,これらの課題に対処するために,医療用LCMの特別設計評価フレームワークであるMed-CoDEを提案する。
論文 参考訳(メタデータ) (2025-04-21T16:51:11Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
MedR-Benchは1,453例の構造化患者のベンチマークデータセットで、推論基準を付した注釈付きである。
本稿では,3つの批判的診察勧告,診断決定,治療計画を含む枠組みを提案し,患者のケアジャーニー全体をシミュレートする。
このベンチマークを用いて、DeepSeek-R1、OpenAI-o3-mini、Gemini-2.0-Flash Thinkingなど、最先端の5つのLCMを評価した。
論文 参考訳(メタデータ) (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Systematic Literature Review on Clinical Trial Eligibility Matching [0.24554686192257422]
レビューでは、説明可能なAIと標準化されたオントロジーがクリニックの信頼を高め、採用を広げる方法が強調されている。
臨床治験採用におけるNLPの変革的ポテンシャルを十分に実現するためには、高度な意味的および時間的表現、拡張されたデータ統合、厳密な予測的評価のさらなる研究が必要である。
論文 参考訳(メタデータ) (2025-03-02T11:45:50Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。