論文の概要: Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering
- arxiv url: http://arxiv.org/abs/2508.00285v1
- Date: Fri, 01 Aug 2025 03:05:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.718935
- Title: Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering
- Title(参考訳): Etiology-Aware attention steering による大言語モデルに基づく診断への臨床推論の統合
- Authors: Peixian Li, Yu Tian, Ruiqi Tu, Chengkai Wu, Jingjing Ren, Jingsong Li,
- Abstract要約: LLM(Large Language Models)は、医学的テキスト理解と生成において重要な機能を示す。
本研究の目的は,LSMの診断精度と臨床推論能力を高めることである。
- 参考スコア(独自算出の注目度): 7.092919468004549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: Large Language Models (LLMs) demonstrate significant capabilities in medical text understanding and generation. However, their diagnostic reliability in complex clinical scenarios remains limited. This study aims to enhance LLMs' diagnostic accuracy and clinical reasoning ability. Method: We propose an Etiology-Aware Attention Steering Framework to integrate structured clinical reasoning into LLM-based diagnosis. Specifically, we first construct Clinical Reasoning Scaffolding (CRS) based on authoritative clinical guidelines for three representative acute abdominal emergencies: acute appendicitis, acute pancreatitis, and acute cholecystitis. Next, we develop the Etiology-Aware Head Identification algorithm to pinpoint attention heads crucial for the model's etiology reasoning. To ensure reliable clinical reasoning alignment, we introduce the Reasoning-Guided Parameter-Efficient Fine-tuning that embeds etiological reasoning cues into input representations and steers the selected Etiology-Aware Heads toward critical information through a Reasoning-Guided Loss function. Result: On the Consistent Diagnosis Cohort, our framework improves average diagnostic accuracy by 15.65% and boosts the average Reasoning Focus Score by 31.6% over baselines. External validation on the Discrepant Diagnosis Cohort further confirms its effectiveness in enhancing diagnostic accuracy. Further assessments via Reasoning Attention Frequency indicate that our models exhibit enhanced reliability when faced with real-world complex scenarios. Conclusion: This study presents a practical and effective approach to enhance clinical reasoning in LLM-based diagnosis. By aligning model attention with structured CRS, the proposed framework offers a promising paradigm for building more interpretable and reliable AI diagnostic systems in complex clinical settings.
- Abstract(参考訳): 目的: 大規模言語モデル(LLM)は医学的テキスト理解と生成において重要な能力を示す。
しかし、複雑な臨床シナリオにおける診断信頼性は依然として限られている。
本研究の目的は,LSMの診断精度と臨床推論能力を高めることである。
方法: 構造的臨床推論をLCMに基づく診断に統合するEtiology-Aware Attention Steering Frameworkを提案する。
具体的には,急性虫垂炎,急性膵炎,急性胆嚢炎という3つの急性腹膜炎の予防的治療ガイドラインに基づくCRSを最初に構築した。
次に,Etiology-Aware Head 同定アルゴリズムを開発し,モデルのエチオロジー推論に欠かせない注意点を特定する。
信頼性の高い臨床推論アライメントを確保するために,階層的推論手がかりを入力表現に埋め込んだReasoning-Guided Parameter-Efficient Fine-tuningを導入し,Reasoning-Guided Loss関数を通じて選択したEtiology-Aware Headsを重要な情報に向けて操る。
結果: 一貫性診断コホートでは, 平均診断精度を15.65%向上し, 平均推論焦点スコアを31.6%向上させる。
離散診断コホートの外部検証は、診断精度を高める効果をさらに確認する。
Reasoning Attention Frequencyによるさらなる評価は、我々のモデルは現実の複雑なシナリオに直面すると信頼性が向上することを示している。
結論: 本研究は, LLM 診断における臨床推論の実践的, 効果的なアプローチである。
モデル注意を構造化CRSと整合させることで、複雑な臨床環境でより解釈可能で信頼性の高いAI診断システムを構築するための有望なパラダイムを提供する。
関連論文リスト
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
医学における大きな言語モデル(LLM)は印象的な能力を実現しているが、体系的で透明で検証可能な推論を行う能力に重大なギャップが残っている。
本稿は、この新興分野に関する最初の体系的なレビューを提供する。
本稿では,学習時間戦略とテスト時間メカニズムに分類した推論強化手法の分類法を提案する。
論文 参考訳(メタデータ) (2025-08-01T14:41:31Z) - DiaLLMs: EHR Enhanced Clinical Conversational System for Clinical Test Recommendation and Diagnosis Prediction [6.253071540087993]
異種EHRデータを臨床基盤の対話に組み込んだ最初の医療用LDMであるDiaLLMを提案する。
臨床検査基準 (CTR) を策定し, 臨床所見を対応する記述にマッピングし, 検査結果を「正常」 あるいは「異常」と分類する。
DiaLLMは臨床検査の推薦と診断の予測においてベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-06-24T23:47:21Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning [1.5646349560044959]
診断透明性を高めるために2つのコアコンポーネントを統合するフレームワークを提案する。
まず,3次元T1強調脳MRIをテキスト・ラジオグラフィー・レポートに変換するモジュールパイプラインを提案する。
第2に,現代大規模言語モデル(LLM)の可能性を探り,臨床医の鑑別診断を支援する。
論文 参考訳(メタデータ) (2025-05-26T13:18:32Z) - DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models [25.13622249539088]
diagnosisArenaは、専門レベルの診断能力の厳格な評価のために設計されたベンチマークである。
診断アリーナは1,113組のセグメンテーション患者と、28の専門専門医からなる。
我々の研究では、最も先進的な推論モデルであるo3、o1、DeepSeek-R1でさえ、それぞれ51.12%、31.09%、17.79%の精度しか達成していないことが明らかになった。
論文 参考訳(メタデータ) (2025-05-20T09:14:53Z) - ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification [57.22053411719822]
ChestX-Reasoner(チェストX-Reasoner)は、臨床報告から直接採掘されるプロセスの監督を活用するために設計された放射線診断MLLMである。
我々の2段階のトレーニングフレームワークは、モデル推論と臨床標準との整合性を高めるために、プロセス報酬によって指導された教師付き微調整と強化学習を組み合わせる。
論文 参考訳(メタデータ) (2025-04-29T16:48:23Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
MedR-Benchは1,453例の構造化患者のベンチマークデータセットで、推論基準を付した注釈付きである。
本稿では,3つの批判的診察勧告,診断決定,治療計画を含む枠組みを提案し,患者のケアジャーニー全体をシミュレートする。
このベンチマークを用いて、DeepSeek-R1、OpenAI-o3-mini、Gemini-2.0-Flash Thinkingなど、最先端の5つのLCMを評価した。
論文 参考訳(メタデータ) (2025-03-06T18:35:39Z) - SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy [45.2233252981348]
臨床知識を符号化するための言語モデル(LLM)が示されている。
6つの最先端モデルをベンチマークする評価フレームワークであるSemioLLMを提案する。
ほとんどのLSMは、脳内の発作発生領域の確率的予測を正確かつ確実に生成できることを示す。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
臨床医のブラックボックスモデルに対する不信は、AI製品の臨床展開を妨げている。
ContrastDiagnosis(ContrastDiagnosis)を提案する。
AUCは0.977で高い診断精度を達成し、高い透明性と説明可能性を維持した。
論文 参考訳(メタデータ) (2024-03-08T13:00:52Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
本稿では,素早い学習を通して診断過程を合理化する「推論認識」診断フレームワークを提案する。
そこで本研究では,実世界の臨床環境に対する機械生成的合理化の可能性を評価するための新しい基準セットを提案する。
論文 参考訳(メタデータ) (2023-12-12T16:14:45Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
本稿では,エンコーダ・デコーダモデルにインスパイアされた新しい応答効率応答パラダイムに基づく,識別可能な認知診断フレームワークを提案する。
診断精度を損なうことなく,ID-CDFが効果的に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-09-01T07:18:02Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。