論文の概要: Sketchpose: Learning to Segment Cells with Partial Annotations
- arxiv url: http://arxiv.org/abs/2508.17798v1
- Date: Mon, 25 Aug 2025 08:43:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.697064
- Title: Sketchpose: Learning to Segment Cells with Partial Annotations
- Title(参考訳): Sketchpose: 部分アノテーションでセルを分割する学習
- Authors: Clément Cazorla, Nathanaël Munier, Renaud Morin, Pierre Weiss,
- Abstract要約: 距離マップに依存したアノテート対象を部分的に処理する手法を提案する。
本研究では,正規データベース上でのフラガルラーニング,トランスファーラーニング,レギュラーラーニングの文脈における提案手法の性能を評価する。
- 参考スコア(独自算出の注目度): 0.2399911126932526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most popular networks used for cell segmentation (e.g. Cellpose, Stardist, HoverNet,...) rely on a prediction of a distance map. It yields unprecedented accuracy but hinges on fully annotated datasets. This is a serious limitation to generate training sets and perform transfer learning. In this paper, we propose a method that still relies on the distance map and handles partially annotated objects. We evaluate the performance of the proposed approach in the contexts of frugal learning, transfer learning and regular learning on regular databases. Our experiments show that it can lead to substantial savings in time and resources without sacrificing segmentation quality. The proposed algorithm is embedded in a user-friendly Napari plugin.
- Abstract(参考訳): セルセグメンテーションで使われる最も一般的なネットワーク(例えば、Cellpose、Stardist、HoverNet、...)は距離マップの予測に依存する。
これは前代未聞の精度をもたらすが、完全に注釈付きデータセットに依存している。
これは、トレーニングセットを生成し、移行学習を実行するための深刻な制限です。
本稿では,距離マップに依存したアノテート対象を部分的に処理する手法を提案する。
本研究では,正規データベース上でのフラガルラーニング,トランスファーラーニング,正規学習の文脈における提案手法の性能を評価する。
実験の結果,セグメンテーションの品質を犠牲にすることなく,時間と資源の大幅な節約につながることが示された。
提案アルゴリズムはユーザフレンドリーなNapariプラグインに埋め込まれている。
関連論文リスト
- Emerging Semantic Segmentation from Positive and Negative Coarse Label Learning [9.134623353594554]
画像中の正の(対象)クラスと負の(背景)クラスの両方から粗い描画をノイズのあるピクセルでも使用し、意味的セグメンテーションのために畳み込みニューラルネットワーク(CNN)を訓練することを提案する。
2つの結合CNNを用いて、純粋にノイズの多い粗いアノテーションから真のセグメンテーションラベル分布を学習する手法を提案する。
論文 参考訳(メタデータ) (2025-08-25T16:38:51Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Semantic Segmentation with Active Semi-Supervised Representation
Learning [23.79742108127707]
我々はラベル付きデータよりもはるかに少ない効果的なセマンティックセグメンテーションアルゴリズムを訓練する。
半教師あり学習のための平均教師アプローチを自己学習アプローチに置き換えることで、従来のS4ALアルゴリズムを拡張した。
セマンティックセグメンテーションのためのアクティブラーニングのためのデファクト標準であるCamVidおよびCityScapesデータセットについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2022-10-16T00:21:43Z) - Semantic Segmentation with Active Semi-Supervised Learning [23.79742108127707]
本稿では,能動的学習と半教師付き学習を組み合わせた新しいアルゴリズムを提案する。
本手法は,ネットワークの性能の95%以上をフルトレーニングセットで取得する。
論文 参考訳(メタデータ) (2022-03-21T04:16:25Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - Graph Sampling Based Deep Metric Learning for Generalizable Person
Re-Identification [114.56752624945142]
我々は、最も一般的なランダムサンプリング手法である有名なpkサンプリングは、深層メトリック学習にとって有益で効率的ではないと主張する。
大規模計量学習のためのグラフサンプリング(GS)と呼ばれる効率的なミニバッチサンプリング手法を提案する。
論文 参考訳(メタデータ) (2021-04-04T06:44:15Z) - Sparse Object-level Supervision for Instance Segmentation with Pixel
Embeddings [4.038011160363972]
ほとんどの最先端のインスタンスセグメンテーションメソッドは、密接な注釈付き画像でトレーニングする必要があります。
非空間埋め込みに基づく提案フリーセグメンテーション手法を提案する。
本研究では, 異なる顕微鏡モードにおける2次元および3次元分割問題の解法について検討した。
論文 参考訳(メタデータ) (2021-03-26T16:36:56Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
セマンティックセグメンテーションタスクにグラフ畳み込みを適用し、改良されたラプラシアンを提案する。
グラフ推論は、空間ピラミッドとして構成された元の特徴空間で直接実行される。
計算とメモリのオーバーヘッドの利点で同等のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-03-23T12:28:07Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
本稿では,少数の位置レベルのアノテーション(十分に教師された)と大量のカウントレベルのアノテーション(弱教師付き)からモデルを学習する,弱教師付き群集カウントの問題について検討する。
我々は、生成した密度マップの自由を制限するための正規化を構築するために、単純なyet効果のトレーニング戦略、すなわちMultiple Auxiliary Tasks Training (MATT)を考案した。
論文 参考訳(メタデータ) (2020-02-29T02:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。