論文の概要: Clustering-based Feature Representation Learning for Oracle Bone Inscriptions Detection
- arxiv url: http://arxiv.org/abs/2508.18641v1
- Date: Tue, 26 Aug 2025 03:39:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.661078
- Title: Clustering-based Feature Representation Learning for Oracle Bone Inscriptions Detection
- Title(参考訳): Oracle Bone Inscriptions Detectionのためのクラスタリングに基づく特徴表現学習
- Authors: Ye Tao, Xinran Fu, Honglin Pang, Xi Yang, Chuntao Li,
- Abstract要約: Oracle Bone Inscriptions (OBI) は古代中国の文明を理解する上で重要な役割を担っている。
OBIを検知する新しいクラスタリングに基づく特徴空間表現学習法を提案する。
2つのOBI検出データセットを用いて実験を行い,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 9.295387149448887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Oracle Bone Inscriptions (OBIs), play a crucial role in understanding ancient Chinese civilization. The automated detection of OBIs from rubbing images represents a fundamental yet challenging task in digital archaeology, primarily due to various degradation factors including noise and cracks that limit the effectiveness of conventional detection networks. To address these challenges, we propose a novel clustering-based feature space representation learning method. Our approach uniquely leverages the Oracle Bones Character (OBC) font library dataset as prior knowledge to enhance feature extraction in the detection network through clustering-based representation learning. The method incorporates a specialized loss function derived from clustering results to optimize feature representation, which is then integrated into the total network loss. We validate the effectiveness of our method by conducting experiments on two OBIs detection dataset using three mainstream detection frameworks: Faster R-CNN, DETR, and Sparse R-CNN. Through extensive experimentation, all frameworks demonstrate significant performance improvements.
- Abstract(参考訳): Oracle Bone Inscriptions (OBI) は古代中国の文明を理解する上で重要な役割を担っている。
画像からOBIを自動的に検出することは、従来の検出ネットワークの有効性を制限するノイズや亀裂などの様々な劣化要因により、デジタル考古学における基本的な課題である。
これらの課題に対処するために,新しいクラスタリングに基づく特徴空間表現学習法を提案する。
提案手法では,Oracle Bones Character (OBC)フォントライブラリデータセットを事前知識として活用し,クラスタリングに基づく表現学習を通じて検出ネットワークの機能抽出を強化する。
本手法では,クラスタリング結果から抽出した特殊な損失関数を組み込んで特徴表現を最適化し,ネットワーク損失全体に統合する。
本稿では,より高速なR-CNN,DETR,スパースR-CNNの3つの主流検出フレームワークを用いて,2つのOBI検出データセットを用いて実験を行い,本手法の有効性を検証する。
大規模な実験を通じて、すべてのフレームワークが大幅なパフォーマンス改善を示している。
関連論文リスト
- Optimizing cnn-Bigru performance: Mish activation and comparative analysis with Relu [0.0]
アクティベーション関数(AF)はニューラルネットワークの基本コンポーネントであり、データ内の複雑なパターンや関係をキャプチャすることができる。
本研究は, 侵入検知システムの性能向上におけるAFの有効性を照らすものである。
論文 参考訳(メタデータ) (2024-05-30T21:48:56Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
本稿では、インスタンス識別に基づくコントラスト学習(CL)を用いて、この問題に取り組むための最初の試みを行う。
本研究では、事前学習されたCLモデルと微調整されたCLモデルから識別表現を導出する能力を探求することにより、この問題に対処する。
論文 参考訳(メタデータ) (2022-09-28T04:36:34Z) - GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks [31.565081319419225]
近年、金融、ネットワークセキュリティ、医療など幅広い分野に応用されているため、属性付きネットワークにおける異常検出が注目されている。
従来のアプローチは、異常検出の問題を解決するために、属性付きネットワークの設定には適用できない。
マルチタスク学習を用いた異常検出の新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-08T04:54:53Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。