論文の概要: The Sound of Risk: A Multimodal Physics-Informed Acoustic Model for Forecasting Market Volatility and Enhancing Market Interpretability
- arxiv url: http://arxiv.org/abs/2508.18653v1
- Date: Tue, 26 Aug 2025 03:51:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.669989
- Title: The Sound of Risk: A Multimodal Physics-Informed Acoustic Model for Forecasting Market Volatility and Enhancing Market Interpretability
- Title(参考訳): リスク音:市場変動の予測と市場解釈性向上のためのマルチモーダル物理インフォームド音響モデル
- Authors: Xiaoliang Chen, Xin Yu, Le Chang, Teng Jing, Jiashuai He, Ze Wang, Yangjun Luo, Xingyu Chen, Jiayue Liang, Yuchen Wang, Jiaying Xie,
- Abstract要約: 本稿では,財務リスク評価のための新たな枠組みを提案する。
我々は1,795件の収支コールのデータセットを用いて、スクリプトによるプレゼンテーションと自発的なQ&A交換の動的変化をキャプチャする機能を構築した。
我々の重要な発見は、予測能力の顕著なばらつきを明らかにしている: マルチモーダルな特徴は、方向性の株価リターンを予測しないが、30日間に実現されたボラティリティにおけるサンプル外変動の最大43.8%を説明できる。
- 参考スコア(独自算出の注目度): 45.501025964025075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information asymmetry in financial markets, often amplified by strategically crafted corporate narratives, undermines the effectiveness of conventional textual analysis. We propose a novel multimodal framework for financial risk assessment that integrates textual sentiment with paralinguistic cues derived from executive vocal tract dynamics in earnings calls. Central to this framework is the Physics-Informed Acoustic Model (PIAM), which applies nonlinear acoustics to robustly extract emotional signatures from raw teleconference sound subject to distortions such as signal clipping. Both acoustic and textual emotional states are projected onto an interpretable three-dimensional Affective State Label (ASL) space-Tension, Stability, and Arousal. Using a dataset of 1,795 earnings calls (approximately 1,800 hours), we construct features capturing dynamic shifts in executive affect between scripted presentation and spontaneous Q&A exchanges. Our key finding reveals a pronounced divergence in predictive capacity: while multimodal features do not forecast directional stock returns, they explain up to 43.8% of the out-of-sample variance in 30-day realized volatility. Importantly, volatility predictions are strongly driven by emotional dynamics during executive transitions from scripted to spontaneous speech, particularly reduced textual stability and heightened acoustic instability from CFOs, and significant arousal variability from CEOs. An ablation study confirms that our multimodal approach substantially outperforms a financials-only baseline, underscoring the complementary contributions of acoustic and textual modalities. By decoding latent markers of uncertainty from verifiable biometric signals, our methodology provides investors and regulators a powerful tool for enhancing market interpretability and identifying hidden corporate uncertainty.
- Abstract(参考訳): 金融市場の情報非対称性は、しばしば戦略的に構築された企業の物語によって増幅され、従来のテキスト分析の有効性を損なう。
本稿では,財務リスク評価のための新たな多モーダルフレームワークを提案する。
この枠組みの中心となるのが物理インフォームド・アコースティック・モデル(PIAM)であり、非線形アコースティックスを適用して信号切断などの歪みを受ける生のテレコン音から感情的シグネチャを強固に抽出する。
音響的およびテキスト的感情状態は、解釈可能な3次元 Affective State Label (ASL) 空間張力、安定性、覚醒に投影される。
約1,795回の収支コール(約1,800時間)のデータセットを使用して、スクリプトによるプレゼンテーションと自発的なQ&A交換の動的変更をキャプチャする機能を構築します。
我々の重要な発見は、予測能力の顕著なばらつきを明らかにしている: マルチモーダルな特徴は、方向性の株価リターンを予測しないが、30日間に実現されたボラティリティにおけるサンプル外変動の最大43.8%を説明できる。
重要なことは、ボラティリティ予測は、スクリプト化された音声から自発的な音声への移行中の感情的ダイナミクス、特にテキスト安定性の低下とCFOからの音響不安定性の増大、そしてCEOからの顕著な刺激的変動によって強く引き起こされる。
アブレーション研究は、我々のマルチモーダルアプローチが、音響的およびテキスト的モダリティの相補的寄与を裏付ける、金融のみのベースラインを大幅に上回っていることを確認した。
検証可能な生体信号から潜伏マーカーを復号することにより、投資家や規制当局に市場解釈性を高め、隠れた企業不確実性を識別するための強力なツールを提供する。
関連論文リスト
- Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths [30.982590730616746]
連邦準備制度が使用するスタイル化され、しばしばニュアンスな言語である「Fedspeak」は、暗黙の政策信号と戦略的スタンスを符号化している。
我々はFedspeakを解析・解釈するための不確実性を考慮したフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-11T14:04:59Z) - Can We Reliably Predict the Fed's Next Move? A Multi-Modal Approach to U.S. Monetary Policy Forecasting [2.6396287656676733]
本研究では、構造化データと連邦準備制度の通信からの非構造化テキスト信号を統合することにより、予測精度を向上させることができるかどうかを検討する。
以上の結果から,ハイブリッドモデルは単調なベースラインを一貫して上回ることがわかった。
金融政策予測では、より単純なハイブリッドモデルは正確性と解釈可能性の両方を提供し、研究者と意思決定者に実用的な洞察を提供する。
論文 参考訳(メタデータ) (2025-06-28T05:54:58Z) - Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index [0.0]
本稿では、金融カオス指標による株式市場のボラティリティの構造動態について考察する。
我々は、低カオス、中間カオス、高カオスの3つの異なる市場体制を特定し、それぞれ異なるレベルのシステム的ストレスを特徴とする。
マクロ経済、金融、政策、地政学の不確実性の変化は、政権全体でのボラティリティのダイナミクスに強い予測力を示します。
論文 参考訳(メタデータ) (2025-04-26T15:48:11Z) - AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction [25.711345527738068]
マルチモーダル法は 2つの欠点に直面しています
彼らはしばしば、信頼できるモデルを得るのに失敗し、株式市場からの情報の吸収のためにデータを過大評価する。
株のボラティリティを予測するためにマルチモーダルモデルを使用することは、性別バイアスに悩まされ、そのようなバイアスを取り除く効率的な方法が欠如している。
我々は,ロバストネス・ワールド・ファイナンシャル・オーディオ・データセットに関する包括的な実験を行い,この手法が現在の最先端ソリューションの性能を上回ることを示した。
論文 参考訳(メタデータ) (2024-07-03T18:40:53Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
本稿では,OODの高次一般化に対するテキストモダリティの悪影響を推定・緩和することを目的とする。
そこで本研究では,マルチモーダル感情分析のためのモデルに依存しない反現実的フレームワークを考案した。
論文 参考訳(メタデータ) (2022-07-24T03:57:40Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。