論文の概要: AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction
- arxiv url: http://arxiv.org/abs/2407.18324v1
- Date: Wed, 3 Jul 2024 18:40:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:35:56.018996
- Title: AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction
- Title(参考訳): AMA-LSTM:株価変動予測のためのピオネリングロバストとフェアファイナンシャルオーディオ分析
- Authors: Shengkun Wang, Taoran Ji, Jianfeng He, Mariam Almutairi, Dan Wang, Linhan Wang, Min Zhang, Chang-Tien Lu,
- Abstract要約: マルチモーダル法は 2つの欠点に直面しています
彼らはしばしば、信頼できるモデルを得るのに失敗し、株式市場からの情報の吸収のためにデータを過大評価する。
株のボラティリティを予測するためにマルチモーダルモデルを使用することは、性別バイアスに悩まされ、そのようなバイアスを取り除く効率的な方法が欠如している。
我々は,ロバストネス・ワールド・ファイナンシャル・オーディオ・データセットに関する包括的な実験を行い,この手法が現在の最先端ソリューションの性能を上回ることを示した。
- 参考スコア(独自算出の注目度): 25.711345527738068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stock volatility prediction is an important task in the financial industry. Recent advancements in multimodal methodologies, which integrate both textual and auditory data, have demonstrated significant improvements in this domain, such as earnings calls (Earnings calls are public available and often involve the management team of a public company and interested parties to discuss the company's earnings). However, these multimodal methods have faced two drawbacks. First, they often fail to yield reliable models and overfit the data due to their absorption of stochastic information from the stock market. Moreover, using multimodal models to predict stock volatility suffers from gender bias and lacks an efficient way to eliminate such bias. To address these aforementioned problems, we use adversarial training to generate perturbations that simulate the inherent stochasticity and bias, by creating areas resistant to random information around the input space to improve model robustness and fairness. Our comprehensive experiments on two real-world financial audio datasets reveal that this method exceeds the performance of current state-of-the-art solution. This confirms the value of adversarial training in reducing stochasticity and bias for stock volatility prediction tasks.
- Abstract(参考訳): 株価のボラティリティ予測は金融業界にとって重要な課題である。
テキストと聴覚データを統合したマルチモーダル手法の最近の進歩は、決算報告など、この分野の大幅な改善を示している(決算報告は公開されており、公開企業の経営陣や関係者が会社の利益について議論することも多い)。
しかし、これらのマルチモーダル法は2つの欠点に直面している。
第一に、彼らはしばしば信頼できるモデルを得ることができず、株式市場から確率的な情報が吸収されたためにデータに過度に適合しない。
さらに、株のボラティリティを予測するためにマルチモーダルモデルを使用することは、性別バイアスに悩まされ、そのようなバイアスを排除する効率的な方法が欠如している。
これらの問題に対処するために、我々は、モデル堅牢性と公正性を改善するために、入力空間の周囲のランダムな情報に抵抗する領域を作成することにより、固有の確率性とバイアスをシミュレートする摂動を生成するために、逆トレーニングを使用します。
2つの実世界の金融オーディオデータセットに関する総合的な実験により、この手法が現在の最先端ソリューションの性能を上回っていることが判明した。
これは、ストックボラティリティ予測タスクの確率性とバイアスを低減するための敵のトレーニングの価値を裏付けるものである。
関連論文リスト
- DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
我々は、歴史的金融指標とストック間関係を前提とした、より良い市場予測を提供するためのアーキテクチャを開発する。
また,Masked Transformer (RTM) を用いて,ストック間関係と歴史的ストックの特徴を生かした新しい決定論的アーキテクチャ MTCHS を提供する。
論文 参考訳(メタデータ) (2024-03-21T01:20:32Z) - Conservative Predictions on Noisy Financial Data [6.300716661852326]
金融市場の価格変動は、非常に騒々しいことがよく知られている。
従来のルール学習技術は、高精度なルールのみを求め、先行者が適用されない予測を控えるものだった。
我々は、モデルが不確実であるデータポイントの予測を控える、同様のアプローチを適用する。
論文 参考訳(メタデータ) (2023-10-18T09:14:19Z) - Incorporating Pre-trained Model Prompting in Multimodal Stock Volume
Movement Prediction [22.949484374773967]
本稿では,PromptをベースとしたMUltimodal Stock volumE予測モデル(ProMUSE)を提案する。
金融ニュースの理解を深めるために、事前訓練された言語モデルを使用します。
また, この問題を緩和するため, 核融合ヘッドの横にある一方向の頭部を保ちながら, 新たな異方性コントラストアライメントを提案する。
論文 参考訳(メタデータ) (2023-09-11T16:47:01Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Two-stage Modeling for Prediction with Confidence [0.0]
分布シフト条件下でニューラルネットワークの性能を一般化することは困難である。
本稿では,分散シフト問題に対する新しい2段階モデルを提案する。
我々のモデルは、ほとんどのデータセットに対して信頼性の高い予測を提供することを示す。
論文 参考訳(メタデータ) (2022-09-19T08:48:07Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。