論文の概要: EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
- arxiv url: http://arxiv.org/abs/2508.18785v1
- Date: Tue, 26 Aug 2025 08:11:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.747724
- Title: EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
- Title(参考訳): EMind:マルチタスク電磁信号理解の基礎モデル
- Authors: Luqing Luo, Wenjin Gui, Yunfei Liu, Ziyue Zhang, Yunxi Zhang, Fengxiang Wang, Zonghao Guo, Zizhi Ma, Xinzhu Liu, Hanxiang He, Jinhai Li, Xin Qiu, Wupeng Xie, Yangang Sun,
- Abstract要約: EMindは電磁信号基礎モデルであり、大規模な事前訓練とこの変調のユニークな性質を橋渡しする。
我々は、複数の信号タイプとタスクをカバーする最初の統一かつ最大の電磁信号データセットを構築した。
EMindは、タスク固有のモデルから電磁的インテリジェンスのための統一されたフレームワークへと決定的に移行し、多くの下流タスクで強力なパフォーマンスと広範な一般化を実現している。
- 参考スコア(独自算出の注目度): 13.118523730875383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.
- Abstract(参考訳): 電磁信号の深い理解は、ダイナミックスペクトル管理、インテリジェントな輸送、自律運転、無人車両の知覚の基礎である。
電界信号はテキストや画像と大きく異なるため、高い異質性、強い背景雑音、複雑な結合時間周波数構造を示すため、既存の一般的なモデルが直接使用できない。
電磁通信とセンシングタスクは多種多様であり、現在の手法ではクロスタスクの一般化と転送効率が欠如しており、大規模な高品質データセットの不足により、真の汎用マルチタスク学習フレームワークの作成が妨げられている。
これらの課題を克服するために,大規模な事前学習を橋渡しする電磁信号基礎モデルであるEMindを導入する。
我々は、複数の信号タイプとタスクをカバーする最初の統一かつ最大の電磁信号データセットを構築した。
電磁信号の物理的特性を利用して,異種多元信号からの効率的な利用と表現学習を可能にする,長適応型多信号パッキング法とハードウェア・アウェア・トレーニング・ストラテジーを考案した。
実験により、EMindは多くの下流タスクに対して強力な性能と広範な一般化を実現し、タスク固有モデルから電磁的知能の統一フレームワークへと決定的に移行した。
コードは、https://github.com/GabrielleTse/EMind.comで入手できる。
関連論文リスト
- BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
多様なデータソースを統一するために、脳の活動を離散表現に定量化する最初のトークンであるBrainTokenizerを紹介します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction [69.96295462931168]
物理インフォームド・ジェネレーティブ・ラーニング・アプローチであるRadioDiff-$bmk2$を提案する。
我々は,無線伝搬に影響を与える臨界空間特性に対応するEM特異点と,ヘルムホルツ方程式の負波数で定義される領域との直接対応を確立する。
論文 参考訳(メタデータ) (2025-04-22T06:28:13Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
ビームフォーミングは、方向と強度を最適化して信号伝送を改善するミリ波通信において重要な技術である。
マルチモーダルセンシング支援ビーム予測は,ユーザ位置やネットワーク条件を予測するために,さまざまなセンサデータを使用して注目されている。
その有望な可能性にもかかわらず、マルチモーダルセンシング支援ビーム予測の採用は、高い計算複雑性、高いコスト、限られたデータセットによって妨げられている。
論文 参考訳(メタデータ) (2025-04-07T15:38:25Z) - Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals [1.124958340749622]
本稿では,時系列解析に関するこれまでの研究に基づいて,シンチレーションパルスのキャラクタリゼーションに特化したネットワークアーキテクチャを提案する。
a)LUXダークマター検出器の設定によって生成されたシミュレーションデータと,(b)高速電子回路を用いた実験電気信号を用いて,NICA/MPD温度計のシンチレーション変動をエミュレートする。
論文 参考訳(メタデータ) (2024-10-09T02:44:53Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
電磁法(EM)イメージングは、セキュリティ、バイオメディシン、地球物理学、各種産業のセンシングに広く応用されている。
機械学習(ML)技術,特に深層学習(DL)技術は,高速かつ正確な画像化の可能性を秘めている。
本稿では、学習に基づくEMイメージングに物理を取り入れる様々なスキームについて検討する。
論文 参考訳(メタデータ) (2022-07-26T02:10:15Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Multi-task Learning Approach for Automatic Modulation and Wireless
Signal Classification [1.827510863075184]
深層ニューラルネットワークの可能性をマルチタスク学習(MTL)フレームワークと組み合わせて活用し、変調と信号分類のタスクを同時に学習します。
我々は、レーダーと複数のラベルとの通信信号からなる唯一の既知のオープン異種無線信号データセットをリリースします。
論文 参考訳(メタデータ) (2021-01-25T17:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。