論文の概要: The point is the mask: scaling coral reef segmentation with weak supervision
- arxiv url: http://arxiv.org/abs/2508.18958v1
- Date: Tue, 26 Aug 2025 11:58:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.827254
- Title: The point is the mask: scaling coral reef segmentation with weak supervision
- Title(参考訳): ポイントはマスク:弱い監督力でサンゴ礁のセグメンテーションを拡大する
- Authors: Matteo Contini, Victor Illien, Sylvain Poulain, Serge Bernard, Julien Barde, Sylvain Bonhommeau, Alexis Joly,
- Abstract要約: ドローンによる空中画像は広い空間範囲を提供するが、その解像度の制限により、サンゴ型のような微細なクラスを確実に区別することは困難である。
本研究では,水中画像から航空データへ微細な生態情報を転送することで,この課題に対処する,マルチスケールの弱教師付きセマンティックセマンティックセマンティックセマンティクスフレームワークを提案する。
本研究では,低コストデータ収集,弱教師付き深層学習,マルチスケールリモートセンシングを組み合わせた高解像度リーフモニタリングのためのスケーラブルで費用対効果の高い手法を提案する。
- 参考スコア(独自算出の注目度): 1.4286124121075066
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Monitoring coral reefs at large spatial scales remains an open challenge, essential for assessing ecosystem health and informing conservation efforts. While drone-based aerial imagery offers broad spatial coverage, its limited resolution makes it difficult to reliably distinguish fine-scale classes, such as coral morphotypes. At the same time, obtaining pixel-level annotations over large spatial extents is costly and labor-intensive, limiting the scalability of deep learning-based segmentation methods for aerial imagery. We present a multi-scale weakly supervised semantic segmentation framework that addresses this challenge by transferring fine-scale ecological information from underwater imagery to aerial data. Our method enables large-scale coral reef mapping from drone imagery with minimal manual annotation, combining classification-based supervision, spatial interpolation and self-distillation techniques. We demonstrate the efficacy of the approach, enabling large-area segmentation of coral morphotypes and demonstrating flexibility for integrating new classes. This study presents a scalable, cost-effective methodology for high-resolution reef monitoring, combining low-cost data collection, weakly supervised deep learning and multi-scale remote sensing.
- Abstract(参考訳): サンゴ礁を大規模な空間スケールでモニタリングすることは、生態系の健全性を評価し、保全活動を示すのに不可欠なオープンな課題である。
ドローンベースの空中画像は広い空間範囲を提供するが、その解像度の制限により、サンゴ型のような微細なクラスを確実に区別することは困難である。
同時に、大きな空間範囲でピクセルレベルのアノテーションを得るにはコストがかかり、労力がかかるため、空中画像の深層学習に基づくセグメンテーション手法のスケーラビリティが制限される。
本研究では,水中画像から航空データへ微細な生態情報を転送することで,この課題に対処する,マルチスケールの弱教師付きセマンティックセマンティックセマンティックセマンティクスフレームワークを提案する。
本手法は, 分類に基づく監督, 空間補間, 自己蒸留技術を組み合わせて, ドローン画像からの大規模サンゴ礁のマッピングを可能にする。
提案手法の有効性を実証し,サンゴ型を大規模に分割し,新しいクラスを統合するための柔軟性を示す。
本研究では,低コストデータ収集,弱教師付き深層学習,マルチスケールリモートセンシングを組み合わせた高解像度リーフモニタリングのためのスケーラブルで費用対効果の高い手法を提案する。
関連論文リスト
- Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
都市森林は、環境の質を高め、都市における生物多様性を支援する上で重要な役割を担っている。
複雑な地形と異なる衛星センサーやUAV飛行高度による画像解像度の変化により、正確に木を検知することは困難である。
低解像度空中画像の品質を高めるため,GANと拡散モデルとドメイン適応を統合した新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2025-05-21T03:57:10Z) - The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs [4.096374910845255]
本研究はサンゴ礁において,2075のイメージ,39のベントニッククラス,174kのセグメンテーションマスクを含む汎用的なセグメンテーションデータセットを初めて公開する。
我々は、幅広いセマンティックセグメンテーションモデルをベンチマークし、Coralscapesから既存の小さなデータセットへの変換学習が一貫して最先端のパフォーマンスをもたらすことを発見した。
Coralscapesは、コンピュータビジョンに基づく効率よくスケーラブルで標準化されたサンゴ礁の調査方法の研究を触媒し、水中の生態学ロボットの開発を効率化する可能性を秘めている。
論文 参考訳(メタデータ) (2025-03-25T18:33:59Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
論文 参考訳(メタデータ) (2025-03-06T05:13:19Z) - From underwater to aerial: a novel multi-scale knowledge distillation approach for coral reef monitoring [1.0644791181419937]
本研究は,サンゴ礁のサンゴ礁モニタリングに,小型水中画像と中規模空中画像を統合した新しいマルチスケールアプローチを提案する。
変圧器を用いた深層学習モデルは水中画像に基づいて訓練され、様々なサンゴ型、関連する動物相、生息地を含む31のクラスの存在を検出する。
以上の結果から,本手法はサンゴのサンゴ類型および生息域の予測において高い精度を達成し,より大規模なサンゴ礁地域への細分化を成功裏に進めることが示唆された。
論文 参考訳(メタデータ) (2025-02-25T06:12:33Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
本稿では, 超音波を応用した非教師型深層学習手法を提案する。
我々は、スペクトルグラフ理論と深層学習法を組み合わせた教師なしディープスペクトル法から重要な概念を統合する。
スペクトルクラスタリングの自己教師型トランスフォーマー機能を利用して、超音波特有のメトリクスと形状と位置の先行値に基づいて意味のあるセグメントを生成し、データセット間のセマンティック一貫性を確保する。
論文 参考訳(メタデータ) (2024-08-04T14:30:14Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
本稿では,マスセグメンテーションのための半弱教師付き学習フレームワークを提案する。
良好な性能を得るために, 限られた強ラベルのサンプルと十分な弱ラベルのサンプルを用いる。
CBIS-DDSMおよびINbreastデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T12:05:25Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
本稿では,エゴモーション映像から水中環境をマッピングするための新しいパラダイムを提案する。
前例のない規模で高精度な3Dセマンティックマッピングを行い,作業コストを大幅に削減した。
本手法は,サンゴ礁のサンゴ礁モニタリングを飛躍的にスケールアップする。
論文 参考訳(メタデータ) (2023-09-22T11:35:10Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - Reef-insight: A framework for reef habitat mapping with clustering
methods via remote sensing [0.3670422696827526]
我々は、高度なクラスタリング手法とリーフ生息地マッピングのためのリモートセンシングを特徴とする教師なし機械学習フレームワークであるReef-Insightを紹介する。
本フレームワークは,リモートセンシングデータを用いたサンゴ礁生息域マッピングのための異なるクラスタリング手法の比較を行う。
以上の結果から,サンゴ礁の生息環境を概観した詳細な分布図を作成できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-01-26T00:03:09Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。