論文の概要: Safety Alignment Should Be Made More Than Just A Few Attention Heads
- arxiv url: http://arxiv.org/abs/2508.19697v1
- Date: Wed, 27 Aug 2025 09:06:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.567528
- Title: Safety Alignment Should Be Made More Than Just A Few Attention Heads
- Title(参考訳): 安全アライメントは、ほんの少しの注意点以上のものになるべきだ
- Authors: Chao Huang, Zefeng Zhang, Juewei Yue, Quangang Li, Chuang Zhang, Tingwen Liu,
- Abstract要約: 安全関連行動の分散符号化を促進するための新しいトレーニング戦略であるAHDを提案する。
実験の結果,AHDはより注意を向ける安全関連機能を分散させることに成功した。
- 参考スコア(独自算出の注目度): 28.977007906005813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current safety alignment for large language models(LLMs) continues to present vulnerabilities, given that adversarial prompting can effectively bypass their safety measures.Our investigation shows that these safety mechanisms predominantly depend on a limited subset of attention heads: removing or ablating these heads can severely compromise model safety. To identify and evaluate these safety-critical components, we introduce RDSHA, a targeted ablation method that leverages the model's refusal direction to pinpoint attention heads mostly responsible for safety behaviors. Further analysis shows that existing jailbreak attacks exploit this concentration by selectively bypassing or manipulating these critical attention heads. To address this issue, we propose AHD, a novel training strategy designed to promote the distributed encoding of safety-related behaviors across numerous attention heads. Experimental results demonstrate that AHD successfully distributes safety-related capabilities across more attention heads. Moreover, evaluations under several mainstream jailbreak attacks show that models trained with AHD exhibit considerably stronger safety robustness, while maintaining overall functional utility.
- Abstract(参考訳): 大規模言語モデル(LLM)の現在の安全性アライメントは、敵のプロンプトが効果的に安全対策を回避できることを考えると、脆弱性の提示を続けている。
これらの安全クリティカルな要素を同定し,評価するために,モデルの拒絶方向を利用して,主に安全行動に責任のある注意を向けるRDSHAを導入する。
さらに分析したところ、既存のジェイルブレイク攻撃は、これらの重要な注意を選択的にバイパスまたは操作することで、この濃度を利用することが示された。
この問題に対処するために,多数の注意を引いた安全関連行動の分散符号化を促進するために設計された,新しいトレーニング戦略であるAHDを提案する。
実験により,AHDはより注意を向ける安全関連機能を分散させることに成功した。
さらに、いくつかの主流のジェイルブレイク攻撃による評価では、AHDで訓練されたモデルは、全体的な機能的実用性を維持しながら、より強力な安全性のロバスト性を示すことが示されている。
関連論文リスト
- Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
大型言語モデル(LLM)の微調整は、ユーザ固有のカスタマイズを可能にするが、重大な安全性リスクをもたらす。
動的安全整形(DSS)は,不安全コンテンツを抑えつつ,応答の安全な部分からの学習を強化するための,きめ細かい安全信号を用いたフレームワークである。
STARスコアによって導かれるSTAR-DSSは、微調整リスクを堅牢に軽減し、多様な脅威、データセット、モデルファミリーにまたがる大幅な安全性の向上を提供する。
論文 参考訳(メタデータ) (2025-05-22T18:05:16Z) - SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
大規模推論モデル(LRM)は、応答する前に明示的に推論する新しい世代パラダイムを導入する。
LRMは有害なクエリや敵の攻撃に対して大きな安全リスクをもたらす。
キー文中の安全アハモーメントをより活性化するSafeKeyを提案する。
論文 参考訳(メタデータ) (2025-05-22T03:46:03Z) - The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1 [70.94607997570729]
本稿では,OpenAI-o3およびDeepSeek-R1推論モデルの総合的安全性評価を行う。
本研究では, 現実の応用における強靭性を評価するために, ジェイルブレイクやインジェクションなどの敵攻撃に対する感受性について検討する。
論文 参考訳(メタデータ) (2025-02-18T09:06:07Z) - STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
SafeTyアライメントとItrospective Reasoningを統合したフレームワークSTAIRを提案する。
その結果,STAIRは本能的アライメント戦略と比較して,有害なアウトプットを効果的に軽減し,有用性を保っていることがわかった。
テスト時のスケーリングでは、STAIRは一般的なジェイルブレイク攻撃に対して、Claude-3.5に匹敵する安全性能を達成する。
論文 参考訳(メタデータ) (2025-02-04T15:02:55Z) - Spot Risks Before Speaking! Unraveling Safety Attention Heads in Large Vision-Language Models [9.318094073527563]
大規模視覚言語モデル(LVLM)の内部アクティベーションは、異なる攻撃に対して悪意のあるプロンプトを識別することができる。
この固有の安全性の認識は、私たちが安全の頭と呼ぶ、まばらな注意の頭によって支配されている」。
これらの安全ヘッドを配置し、それらのアクティベーションを連結することにより、単純だが強力な悪意のあるプロンプト検出器を構築する。
論文 参考訳(メタデータ) (2025-01-03T07:01:15Z) - On the Role of Attention Heads in Large Language Model Safety [64.51534137177491]
大規模言語モデル(LLM)は、複数の言語タスクにおいて最先端のパフォーマンスを達成するが、それらの安全ガードレールを回避できる。
モデル安全への個人的貢献を評価するため,マルチヘッド対応のための新しい指標として,安全ヘッドImPortant Score(Ships)を提案する。
論文 参考訳(メタデータ) (2024-10-17T16:08:06Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。