論文の概要: SPLF-SAM: Self-Prompting Segment Anything Model for Light Field Salient Object Detection
- arxiv url: http://arxiv.org/abs/2508.19746v1
- Date: Wed, 27 Aug 2025 10:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.587225
- Title: SPLF-SAM: Self-Prompting Segment Anything Model for Light Field Salient Object Detection
- Title(参考訳): SPLF-SAM:光電場能動物体検出のためのセルフプロンピングセグメントモデル
- Authors: Qiyao Xu, Qiming Wu, Xiaowei Li,
- Abstract要約: Seegment Anything Model (SAM) は、光場極性物体検出(LF SOD)を解く際、顕著な能力を示した。
本稿では,SPLF-SAMと呼ばれる新しい光場セグメントモデルを提案する。
- 参考スコア(独自算出の注目度): 4.2838688744175775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segment Anything Model (SAM) has demonstrated remarkable capabilities in solving light field salient object detection (LF SOD). However, most existing models tend to neglect the extraction of prompt information under this task. Meanwhile, traditional models ignore the analysis of frequency-domain information, which leads to small objects being overwhelmed by noise. In this paper, we put forward a novel model called self-prompting light field segment anything model (SPLF-SAM), equipped with unified multi-scale feature embedding block (UMFEB) and a multi-scale adaptive filtering adapter (MAFA). UMFEB is capable of identifying multiple objects of varying sizes, while MAFA, by learning frequency features, effectively prevents small objects from being overwhelmed by noise. Extensive experiments have demonstrated the superiority of our method over ten state-of-the-art (SOTA) LF SOD methods. Our code will be available at https://github.com/XucherCH/splfsam.
- Abstract(参考訳): Seegment Anything Model (SAM) は、光場極性物体検出(LF SOD)を解く際、顕著な能力を示した。
しかし、既存のモデルの多くは、このタスクの下での迅速な情報の抽出を無視する傾向にある。
一方、従来のモデルは周波数領域の情報の解析を無視し、小さな物体はノイズに圧倒される。
本稿では,マルチスケール特徴埋め込みブロック (UMFEB) とマルチスケール適応フィルタアダプタ (MAFA) を備えた自己プロンプト光電場セグメントモデル (SPLF-SAM) を提案する。
UMFEBは様々な大きさの複数の物体を識別できるが、MAFAは周波数の特徴を学習することで、小さな物体がノイズに圧倒されるのを効果的に防いでいる。
実験の結果,SOTA(State-of-the-art)LF SOD法よりも優れた結果が得られた。
私たちのコードはhttps://github.com/XucherCH/splfsam.comで公開されます。
関連論文リスト
- SAMRefiner: Taming Segment Anything Model for Universal Mask Refinement [40.37217744643069]
マスク改善タスクにSAMを適用することで,汎用的で効率的なアプローチを提案する。
具体的には,SAMの多様な入力プロンプトをマイニングするためのマルチプロンプト掘削手法を提案する。
ターゲットデータセット上のジェネリックSAMRefinerのパフォーマンスをさらに向上するため、IoU適応ステップを追加してSAMRefiner++にメソッドを拡張します。
論文 参考訳(メタデータ) (2025-02-10T18:33:15Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Boost UAV-based Ojbect Detection via Scale-Invariant Feature Disentanglement and Adversarial Learning [18.11107031800982]
本稿では,スケール不変の特徴を学習することで,単段階推論の精度を向上させることを提案する。
提案手法は,モデル精度を効果的に向上し,2つのデータセット上での最先端(SoTA)性能を実現する。
論文 参考訳(メタデータ) (2024-05-24T11:40:22Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
統一型異常検出(MINT-AD)のためのマルチクラスインプリシトニューラル表現変換器を提案する。
マルチクラス分布を学習することにより、モデルが変換器デコーダのクラス対応クエリ埋め込みを生成する。
MINT-ADは、カテゴリと位置情報を特徴埋め込み空間に投影することができ、さらに分類と事前確率損失関数によって監督される。
論文 参考訳(メタデータ) (2024-03-21T08:08:31Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAMはオープン・ボキャブラリ・パノプティ・セグメンテーション・モデルであり、Segment Anything Model(SAM)の強みを、エンドツーエンドのフレームワークで視覚ネイティブのCLIPモデルと統合する。
本稿では,マスクの質を適応的に向上し,各画像の推論中にオープン語彙分類の性能を高めるマスク対応選択組立アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-14T17:55:03Z) - ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection [52.16237548064387]
Few-shot Object Detection (FSOD) は、非常に少数のアノテーション付きサンプルからオブジェクトを識別する。
近年のFSOD法の多くは、2段階の学習パラダイムを適用しており、このパラダイムは豊富なベースクラスから学んだ知識を、グローバルな特徴を学習することで、数発の検知を補助する。
本研究では,局所的な部分に応じて大域的オブジェクトを推論するための拡張可能共存注意(ECEA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-09-15T06:55:43Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。