論文の概要: Encoding Tactile Stimuli for Organoid Intelligence in Braille Recognition
- arxiv url: http://arxiv.org/abs/2508.20850v1
- Date: Thu, 28 Aug 2025 14:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.456208
- Title: Encoding Tactile Stimuli for Organoid Intelligence in Braille Recognition
- Title(参考訳): 点字認識におけるオルガノイドインテリジェンスのための触覚刺激の符号化
- Authors: Tianyi Liu, Hemma Philamore, Benjamin Ward-Cherrier,
- Abstract要約: 本研究では,触覚センサデータを電気刺激パターンにマッピングする汎用符号化手法を提案する。
低密度マイクロ電極アレイ(MEA)上に培養したヒト前脳オルガノイド
システムは1つのオルガノイドで61%の平均点字分類精度を達成した。
- 参考スコア(独自算出の注目度): 14.564320779776686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a generalizable encoding strategy that maps tactile sensor data to electrical stimulation patterns, enabling neural organoids to perform an open-loop artificial tactile Braille classification task. Human forebrain organoids cultured on a low-density microelectrode array (MEA) are systematically stimulated to characterize the relationship between electrical stimulation parameters (number of pulse, phase amplitude, phase duration, and trigger delay) and organoid responses, measured as spike activity and spatial displacement of the center of activity. Implemented on event-based tactile inputs recorded from the Evetac sensor, our system achieved an average Braille letter classification accuracy of 61 percent with a single organoid, which increased significantly to 83 percent when responses from a three-organoid ensemble were combined. Additionally, the multi-organoid configuration demonstrated enhanced robustness against various types of artificially introduced noise. This research demonstrates the potential of organoids as low-power, adaptive bio-hybrid computational elements and provides a foundational encoding framework for future scalable bio-hybrid computing architectures.
- Abstract(参考訳): 本研究では、触覚センサデータを電気刺激パターンにマッピングし、ニューラルオルガノイドがオープンループ人工触覚点字分類タスクを実行できる一般化可能な符号化戦略を提案する。
低密度マイクロ電極アレイ(MEA)上に培養されたヒト前脳オルガノイドを系統的に刺激し、電気刺激パラメータ(パルス数、位相振幅、位相持続時間、トリガー遅延)と、活動中心のスパイク活性および空間変位として測定されたオルガノイド応答との関係を特徴づける。
Evetacセンサーから記録されたイベントベースの触覚入力に基づいて,1つのオルガノイドを用いて平均点字分類精度61%を達成し,3つのオルガノイドアンサンブルからの応答を組み合わせれば83%に向上した。
さらに, マルチオーガノイド構成は, 各種人工騒音に対して強靭性を示した。
本研究は,低消費電力適応型バイオハイブリッドコンピューティング要素としてのオルガノイドの可能性を示し,将来のスケーラブルなバイオハイブリッドコンピューティングアーキテクチャのための基礎的な符号化フレームワークを提供する。
関連論文リスト
- BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
多様なデータソースを統一するために、脳の活動を離散表現に定量化する最初のトークンであるBrainTokenizerを紹介します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - Compact Neural Network Algorithm for Electrocardiogram Classification [0.0]
不整脈の自動分類のための小型心電図システムを提案する。
このシステムはMIT-BIH不整脈データベース上で97.36%の精度を達成する。
論文 参考訳(メタデータ) (2024-12-19T19:55:22Z) - Wavelet Analysis of Noninvasive EEG Signals Discriminates Complex and Natural Grasp Types [0.14999444543328289]
本研究の目的は,脳波を用いた神経補綴器開発と脳-コンピュータ・インタフェース(BCI)の応用を目的とした脳波からの握手をデコードすることである。
論文 参考訳(メタデータ) (2024-01-31T23:13:38Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors [1.380698851850167]
本稿では,生理的信号から特徴を最小限に抽出し,分類するディープシードクラスタリングアルゴリズムを提案する。
本モデルは,感情コンピューティング研究で頻繁に使用される3つのデータセットに対して,良好な性能が得られることを示す。
論文 参考訳(メタデータ) (2023-08-17T14:37:35Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Graph Convolutional Networks Reveal Neural Connections Encoding
Prosthetic Sensation [1.4431534196506413]
被験者が人工的な入力を解釈することを学ぶときの刺激パラメータを最適化する機械学習戦略は、デバイスの有効性を向上させる可能性がある。
深層学習を非ユークリッドグラフデータに拡張する最近の進歩は、神経スパイク活動の解釈に新しいアプローチをもたらす。
人工感覚情報の処理に関与するニューロン間の機能的関係を推定するために,グラフ畳み込みネットワーク(GCN)を適用した。
論文 参考訳(メタデータ) (2020-08-23T01:43:46Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。