論文の概要: Transfer Learning for Classification under Decision Rule Drift with Application to Optimal Individualized Treatment Rule Estimation
- arxiv url: http://arxiv.org/abs/2508.20942v1
- Date: Thu, 28 Aug 2025 16:03:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.496902
- Title: Transfer Learning for Classification under Decision Rule Drift with Application to Optimal Individualized Treatment Rule Estimation
- Title(参考訳): 決定規則ドリフトに基づく分類のための伝達学習と最適個別処理規則推定への応用
- Authors: Xiaohan Wang, Yang Ning,
- Abstract要約: 本研究では,ベイズ決定規則による後方ドリフトのモデル化手法を提案する。
穏やかな規則性条件の下では、推定器の整合性を確立し、リスク境界を導出する。
本稿では,最適な個別化処理ルールの推定に適応させることにより,本手法の幅広い適用性について述べる。
- 参考スコア(独自算出の注目度): 50.34670342434884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we extend the transfer learning classification framework from regression function-based methods to decision rules. We propose a novel methodology for modeling posterior drift through Bayes decision rules. By exploiting the geometric transformation of the Bayes decision boundary, our method reformulates the problem as a low-dimensional empirical risk minimization problem. Under mild regularity conditions, we establish the consistency of our estimators and derive the risk bounds. Moreover, we illustrate the broad applicability of our method by adapting it to the estimation of optimal individualized treatment rules. Extensive simulation studies and analyses of real-world data further demonstrate both superior performance and robustness of our approach.
- Abstract(参考訳): 本稿では,回帰関数に基づく手法から決定規則まで,伝達学習分類フレームワークを拡張した。
本研究では,ベイズ決定規則による後方ドリフトのモデル化手法を提案する。
ベイズ決定境界の幾何学的変換を利用して,低次元経験的リスク最小化問題として問題を再構成する。
穏やかな規則性条件の下では、推定器の整合性を確立し、リスク境界を導出する。
さらに、最適な個別化処理ルールの推定に適応させることにより、本手法の幅広い適用性について述べる。
実世界のデータの大規模なシミュレーション研究と分析により、我々のアプローチの優れた性能と堅牢性がさらに証明された。
関連論文リスト
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
平均逆無限水平POMDPを未知の遷移モデルで扱う。
この障壁を克服する斬新でシンプルな推定器を提示する。
論文 参考訳(メタデータ) (2025-01-30T22:29:41Z) - Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems [10.404992912881601]
拡散に対する連続時間線形四元数(LQ)制御のクラスに対する強化学習(RL)について検討した。
モデルパラメータの知識にも,その推定にも依存しないモデルフリーアプローチを適用し,RLアルゴリズムを設計して,適切なポリシパラメータを直接学習する。
論文 参考訳(メタデータ) (2024-07-24T12:26:21Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
逐次的に収集したデータの実験を適応的に選択するアクティブシーケンシャル推定の問題について検討する。
目標は、より正確なモデル推定のための実験選択ルールを設計することである。
そこで本稿では,グリーディ実験の選択手法のクラスを提案し,最大可能性の統計的解析を行う。
論文 参考訳(メタデータ) (2024-02-13T17:09:29Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
オフラインポリシーの最適化は多くの現実世界の意思決定問題に大きな影響を与える可能性がある。
重要度サンプリングとその変種は、オフラインポリシー評価において一般的に使用されるタイプの推定器である。
そこで本稿では, 州ごとの正規化制約によって過度に適合することを避けるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-01T19:18:15Z) - Limitations of a proposed correction for slow drifts in decision
criterion [0.0]
ランダムドリフトからの系統的な更新を曖昧にするためのモデルに基づくアプローチを提案する。
提案手法は,決定基準におけるドリフトの潜航軌跡を正確に回復することを示す。
本結果は,生成過程の仮定を直接意思決定モデルに組み込むことの利点を強調した。
論文 参考訳(メタデータ) (2022-05-22T19:33:19Z) - Sparse Methods for Automatic Relevance Determination [0.0]
まず、自動妥当性決定(ARD)について検討し、スパースモデルを実現するために、追加の正規化やしきい値設定の必要性を解析的に実証する。
次に、正規化ベースとしきい値ベースという2つの手法のクラスについて論じる。
論文 参考訳(メタデータ) (2020-05-18T14:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。