論文の概要: Advanced Deep Learning Techniques for Classifying Dental Conditions Using Panoramic X-Ray Images
- arxiv url: http://arxiv.org/abs/2508.21088v1
- Date: Wed, 27 Aug 2025 04:52:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.813606
- Title: Advanced Deep Learning Techniques for Classifying Dental Conditions Using Panoramic X-Ray Images
- Title(参考訳): パノラマX線画像を用いた歯質分類のための高度な深層学習技術
- Authors: Alireza Golkarieh, Kiana Kiashemshaki, Sajjad Rezvani Boroujeni,
- Abstract要約: 本研究では,パノラマX線画像における歯質自動分類のための深層学習手法について検討した。
カスタム畳み込みニューラルネットワーク(CNN)、CNN特徴抽出と従来の分類器を組み合わせたハイブリッドモデル、微調整された事前学習アーキテクチャの3つのアプローチが評価された。
その結果, ハイブリッドモデルにより形態的類似条件の識別が向上し, 効率的かつ信頼性の高い性能が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates deep learning methods for automated classification of dental conditions in panoramic X-ray images. A dataset of 1,512 radiographs with 11,137 expert-verified annotations across four conditions fillings, cavities, implants, and impacted teeth was used. After preprocessing and class balancing, three approaches were evaluated: a custom convolutional neural network (CNN), hybrid models combining CNN feature extraction with traditional classifiers, and fine-tuned pre-trained architectures. Experiments employed 5 fold cross validation with accuracy, precision, recall, and F1 score as evaluation metrics. The hybrid CNN Random Forest model achieved the highest performance with 85.4% accuracy, surpassing the custom CNN baseline of 74.3%. Among pre-trained models, VGG16 performed best at 82.3% accuracy, followed by Xception and ResNet50. Results show that hybrid models improve discrimination of morphologically similar conditions and provide efficient, reliable performance. These findings suggest that combining CNN-based feature extraction with ensemble classifiers offers a practical path toward automated dental diagnostic support, while also highlighting the need for larger datasets and further clinical validation.
- Abstract(参考訳): 本研究では,パノラマX線画像における歯質自動分類のための深層学習手法について検討した。
1,512個のX線写真と11,137個の専門家が検証した4つの条件、空洞、インプラント、衝撃を受けた歯のアノテーションを用いた。
プリプロセスとクラスバランシングの後、3つのアプローチが評価された。カスタム畳み込みニューラルネットワーク(CNN)、CNNの特徴抽出と従来の分類器を組み合わせたハイブリッドモデル、微調整された事前学習アーキテクチャである。
実験では、評価指標として精度、精度、リコール、F1スコアの5倍のクロスバリデーションを使用した。
ハイブリッドCNNランダムフォレストモデルは85.4%の精度で最高性能を達成し、カスタムCNNベースラインの74.3%を上回った。
事前訓練されたモデルの中で、VGG16は82.3%の精度で、その後XceptionとResNet50が続いた。
その結果, ハイブリッドモデルにより形態的類似条件の識別が向上し, 効率的かつ信頼性の高い性能が得られた。
これらの結果は,CNNに基づく特徴抽出とアンサンブル分類器を組み合わせることで,より大規模なデータセットの必要性とさらなる臨床検査の必要性を強調しつつ,歯科診断の自動化に向けた実践的な道筋が得られたことを示唆している。
関連論文リスト
- Enhancing Orthopox Image Classification Using Hybrid Machine Learning and Deep Learning Models [40.325359811289445]
本稿では、機械学習モデルと事前訓練されたディープラーニングモデルを組み合わせて、拡張データを必要とせずに、深い特徴表現を抽出する。
その結果, この特徴抽出法は, 最先端技術における他の手法と組み合わせることで, 優れた分類結果が得られることがわかった。
論文 参考訳(メタデータ) (2025-06-06T11:52:07Z) - Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
本研究は,病理組織像を用いた乳癌分類への新規かつ正確なアプローチを提案する。
さまざまな画像データセット間で、主要な畳み込みニューラルネットワーク(CNN)モデルを体系的に比較する。
そこで本研究では,スタンドアロンCNNモデルにおいて,例外的分類精度を実現するために必要な設定について検討した。
論文 参考訳(メタデータ) (2024-10-04T11:31:43Z) - A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification [1.9499122087408571]
病理組織学の基礎モデルは、多くのタスクにまたがる大きな約束を示している。
これまでで最も厳格な単一タスクによる病理組織学的基盤モデルの検証を報告した。
病理組織学的基盤モデルは卵巣がんの亜型化に明確な利益をもたらす。
論文 参考訳(メタデータ) (2024-05-16T11:21:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - (Certified!!) Adversarial Robustness for Free! [116.6052628829344]
逆方向の摂動が0.5の2ノルム以内であることに制約された場合,ImageNetでは71%の精度が証明された。
これらの結果は,モデルパラメータの微調整や再学習を必要とせず,事前学習した拡散モデルと画像分類器のみを用いて得られる。
論文 参考訳(メタデータ) (2022-06-21T17:27:27Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
本稿では、IDDパターンを分類するためのエンドツーエンドのディープ畳み込みニューラルネットワーク(CNN)を提案する。
提案モデルでは,カーネルサイズが異なる4つの畳み込み層と,Rectified Linear Unit (ReLU) アクティベーション機能を備える。
128のCTスキャンと5つのクラスからなる21328の画像パッチからなるデータセットを用いて、提案モデルのトレーニングと評価を行う。
論文 参考訳(メタデータ) (2022-04-21T06:36:10Z) - AI-enabled Automatic Multimodal Fusion of Cone-Beam CT and Intraoral
Scans for Intelligent 3D Tooth-Bone Reconstruction and Clinical Applications [29.065668174732014]
仮想歯科治療計画における重要なステップは、CBCTから全ての歯骨構造を正確に切り離すことである。
従来の研究では、深層学習を用いたCBCTセグメンテーションのいくつかの方法が確立されている。
本稿では,CBCTセグメンテーションモデル,口腔内スキャン(IOS)セグメンテーションモデル,および3次元融合クラウン・ルート構造を生成する融合モデルからなる深部歯科用マルチモーダル分析フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T07:50:15Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
注意モジュールを持つディープ畳み込みニューラルネットワーク(CNN)はパノラマX線写真上で骨粗しょう症を検出することができる。
49歳から60歳までの70種類のパノラマX線写真(PR)のデータセットを用いて検討した。
論文 参考訳(メタデータ) (2021-10-19T00:03:57Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - An Adaptive Enhancement Based Hybrid CNN Model for Digital Dental X-ray
Positions Classification [1.0672152844970149]
適応ヒストグラム等化と畳み込みニューラルネットワーク(CNN)に基づく新しい解法を提案する。
テストセットの精度と特異性は90%を超え、AUCは0.97に達した。
論文 参考訳(メタデータ) (2020-05-01T13:55:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。