論文の概要: PMODE: Theoretically Grounded and Modular Mixture Modeling
- arxiv url: http://arxiv.org/abs/2508.21396v1
- Date: Fri, 29 Aug 2025 08:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.961263
- Title: PMODE: Theoretically Grounded and Modular Mixture Modeling
- Title(参考訳): PMODE:理論的基礎とモジュール混合モデリング
- Authors: Robert A. Vandermeulen,
- Abstract要約: PMODEはデータを分割し、各サブセットに別々の推定器を配置することで混合を構築します。
アプリケーションとして,数千次元の設定に高次元密度推定を適用可能なMV-PMODEを開発した。
- 参考スコア(独自算出の注目度): 12.688634089849023
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce PMODE (Partitioned Mixture Of Density Estimators), a general and modular framework for mixture modeling with both parametric and nonparametric components. PMODE builds mixtures by partitioning the data and fitting separate estimators to each subset. It attains near-optimal rates for this estimator class and remains valid even when the mixture components come from different distribution families. As an application, we develop MV-PMODE, which scales a previously theoretical approach to high-dimensional density estimation to settings with thousands of dimensions. Despite its simplicity, it performs competitively against deep baselines on CIFAR-10 anomaly detection.
- Abstract(参考訳): PMODE(Partitioned Mixture of Density Estimator)はパラメトリック・非パラメトリック・コンポーネントの混合モデリングのための汎用およびモジュラー・フレームワークである。
PMODEはデータを分割し、各サブセットに別々の推定器を配置することで混合を構築します。
この推定器のクラスは最適に近い速度に達し、混合成分が異なる分布系から来る場合でも有効である。
アプリケーションとして,数千の次元を持つ設定に高次元密度推定を拡張できるMV-PMODEを開発した。
その単純さにもかかわらず、CIFAR-10異常検出の深いベースラインに対して競争力がある。
関連論文リスト
- DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking [50.038098341549095]
状態推定は、高い操作性を持つ3次元物体追跡において困難である。
本稿では,各方向の異なる動きモデルから推定される推定を効果的に組み合わせる新しいフレームワークであるDIMMを提案する。
DIMMは既存の状態推定手法のトラッキング精度を31.61%99.23%向上させる。
論文 参考訳(メタデータ) (2025-05-18T10:12:41Z) - Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
混合モデルの後方推論を要約する既存の方法は、クラスタリングのための暗黙のランダムパーティションの点推定を同定することに焦点を当てている。
本研究では,非パラメトリックベイズ混合モデルにおける後部推論を要約し,混合度(または混合度)を推定対象として優先順位付けする手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T02:15:38Z) - Density Estimation via Binless Multidimensional Integration [45.21975243399607]
非パラメトリック、ロバスト、およびデータ効率の高い密度推定のためのBinless Multidimensional Thermodynamic Integration (BMTI)法を提案する。
BMTIは、近隣のデータポイント間の対数密度差を計算し、その密度の対数を推定する。
この方法は様々な複雑な合成高次元データセットでテストされ、化学物理学の文献から現実的なデータセットでベンチマークされる。
論文 参考訳(メタデータ) (2024-07-10T23:45:20Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Distributed, partially collapsed MCMC for Bayesian Nonparametrics [68.5279360794418]
ディリクレ法やベータ・ベルヌーリ法のようなモデルでよく用いられる完全無作為測度は独立な部分測度に分解可能であるという事実を利用する。
この分解を用いて、潜在測度を、インスタンス化された成分のみを含む有限測度と、他のすべての成分を含む無限測度に分割する。
得られたハイブリッドアルゴリズムは、収束保証を犠牲にすることなくスケーラブルな推論を可能にすることができる。
論文 参考訳(メタデータ) (2020-01-15T23:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。