論文の概要: Density Estimation via Binless Multidimensional Integration
- arxiv url: http://arxiv.org/abs/2407.08094v2
- Date: Sun, 14 Jul 2024 14:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 13:31:11.126514
- Title: Density Estimation via Binless Multidimensional Integration
- Title(参考訳): ビンレス多次元積分による密度推定
- Authors: Matteo Carli, Alex Rodriguez, Alessandro Laio, Aldo Glielmo,
- Abstract要約: 非パラメトリック、ロバスト、およびデータ効率の高い密度推定のためのBinless Multidimensional Thermodynamic Integration (BMTI)法を提案する。
BMTIは、近隣のデータポイント間の対数密度差を計算し、その密度の対数を推定する。
この方法は様々な複雑な合成高次元データセットでテストされ、化学物理学の文献から現実的なデータセットでベンチマークされる。
- 参考スコア(独自算出の注目度): 45.21975243399607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Binless Multidimensional Thermodynamic Integration (BMTI) method for nonparametric, robust, and data-efficient density estimation. BMTI estimates the logarithm of the density by initially computing log-density differences between neighbouring data points. Subsequently, such differences are integrated, weighted by their associated uncertainties, using a maximum-likelihood formulation. This procedure can be seen as an extension to a multidimensional setting of the thermodynamic integration, a technique developed in statistical physics. The method leverages the manifold hypothesis, estimating quantities within the intrinsic data manifold without defining an explicit coordinate map. It does not rely on any binning or space partitioning, but rather on the construction of a neighbourhood graph based on an adaptive bandwidth selection procedure. BMTI mitigates the limitations commonly associated with traditional nonparametric density estimators, effectively reconstructing smooth profiles even in high-dimensional embedding spaces. The method is tested on a variety of complex synthetic high-dimensional datasets, where it is shown to outperform traditional estimators, and is benchmarked on realistic datasets from the chemical physics literature.
- Abstract(参考訳): 非パラメトリック・ロバスト・データ効率密度推定のためのBinless Multidimensional Thermodynamic Integration (BMTI) 法を提案する。
BMTIは、近隣のデータポイント間の対数密度差を計算し、その密度の対数を推定する。
その後、そのような差分は、それらの関連する不確実性によって重み付けされ、最大的様相の定式化によって統合される。
この手順は、統計物理学で開発された技術である熱力学積分の多次元的な設定の拡張と見なすことができる。
この方法は多様体仮説を利用して、明示的な座標写像を定義することなく本質的なデータ多様体内の量を推定する。
双対や空間分割には依存せず、適応的な帯域幅選択手順に基づく近傍グラフの構築に頼っている。
BMTIは従来の非パラメトリック密度推定器に共通する制限を緩和し、高次元埋め込み空間においてもスムーズなプロファイルを効果的に再構築する。
この方法は、様々な複雑な合成高次元データセットでテストされ、従来の推定値よりも優れていることが示され、化学物理学の文献から現実的なデータセットでベンチマークされる。
関連論文リスト
- Learning Distances from Data with Normalizing Flows and Score Matching [9.605001452209867]
密度に基づく距離は、メートル法学習の問題に対するエレガントな解決策を提供する。
我々は,フェルマー距離を推定する既存の手法が,低次元と高次元の両方において収束不良に悩まされていることを示す。
我々の研究は、特に高次元空間における密度に基づく距離の実践的利用の道を開いた。
論文 参考訳(メタデータ) (2024-07-12T14:30:41Z) - Minimizing robust density power-based divergences for general parametric
density models [3.0277213703725767]
一般パラメトリック密度に対する密度パワー分散(DPD)を最小化する手法を提案する。
提案手法は、他の密度電力ベースの$gamma$-divergencesを最小化するためにも利用できる。
論文 参考訳(メタデータ) (2023-07-11T13:33:47Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features [0.0]
この方法は、カーネル密度推定(KDE)の効率的な近似と見なすことができる。
提案手法を, 各種データセット上での11種類の最先端異常検出手法と体系的に比較した。
論文 参考訳(メタデータ) (2022-10-26T15:43:16Z) - Quantum Adaptive Fourier Features for Neural Density Estimation [0.0]
本稿では,カーネル密度推定の一種とみなすニューラル密度推定法を提案する。
この方法は密度行列、量子力学で使われる形式主義、適応フーリエ特徴に基づいている。
本手法は, 異なる合成および実データを用いて評価し, その性能を最先端のニューラル密度推定法と比較した。
論文 参考訳(メタデータ) (2022-08-01T01:39:11Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - High-Dimensional Non-Parametric Density Estimation in Mixed Smooth
Sobolev Spaces [31.663702435594825]
密度推定は、機械学習、統計的推測、可視化において多くのタスクにおいて重要な役割を果たす。
高次元密度推定の主なボトルネックは計算コストの禁止と収束速度の低下である。
適応型双曲交叉密度推定器(Adaptive hyperbolic cross density estimator)と呼ばれる高次元非パラメトリック密度推定のための新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-06-05T21:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。