論文の概要: HiVA: Self-organized Hierarchical Variable Agent via Goal-driven Semantic-Topological Evolution
- arxiv url: http://arxiv.org/abs/2509.00189v1
- Date: Fri, 29 Aug 2025 18:51:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.119291
- Title: HiVA: Self-organized Hierarchical Variable Agent via Goal-driven Semantic-Topological Evolution
- Title(参考訳): HiVA: ゴール駆動型セマンティック・トポロジー進化による自己組織的階層的可変エージェント
- Authors: Jinzhou Tang, Jusheng Zhang, Qinhan Lv, Sidi Liu, Jing Yang, Chengpei Tang, Keze Wang,
- Abstract要約: HiVA(Hierarchical Variable Agent)は、セマンティック・トポロジカル・エボリューション(STEV)アルゴリズムを用いて、自己組織化グラフとしてエージェントをモデル化する新しいフレームワークである。
対話、コーディング、Longcontext Q&A、数学、エージェントベンチマークの実験では、タスク精度が5~10%向上し、リソース効率が向上した。
- 参考スコア(独自算出の注目度): 13.440964262446558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents play a crucial role in advancing Artificial General Intelligence, enabling problem decomposition and tool orchestration through Large Language Models (LLMs). However, existing paradigms face a critical trade-off. On one hand, reusable fixed workflows require manual reconfiguration upon environmental changes; on the other hand, flexible reactive loops fail to distill reasoning progress into transferable structures. We introduce Hierarchical Variable Agent (HiVA), a novel framework modeling agentic workflows as self-organized graphs with the Semantic-Topological Evolution (STEV) algorithm, which optimizes hybrid semantic-topological spaces using textual gradients as discrete-domain surrogates for backpropagation. The iterative process comprises Multi-Armed Bandit-infused forward routing, diagnostic gradient generation from environmental feedback, and coordinated updates that co-evolve individual semantics and topology for collective optimization in unknown environments. Experiments on dialogue, coding, Long-context Q&A, mathematical, and agentic benchmarks demonstrate improvements of 5-10% in task accuracy and enhanced resource efficiency over existing baselines, establishing HiVA's effectiveness in autonomous task execution.
- Abstract(参考訳): 自律エージェントは、Large Language Models (LLMs)を通じて問題分解とツールオーケストレーションを可能にする、人工知能の進歩において重要な役割を果たす。
しかし、既存のパラダイムは重要なトレードオフに直面しています。
一方、再利用可能な固定ワークフローは、環境の変化に応じて手動で再構成する必要がある。
階層的可変エージェント (HiVA) は,セマンティック・トポロジー進化 (STEV) アルゴリズムを用いて,エージェントワークフローを自己組織グラフとしてモデル化し,テキスト勾配を逆プロパゲーションのための離散領域サロゲートとして用いたハイブリッドな意味位相空間を最適化するフレームワークである。
この反復的プロセスは、マルチアーメッド帯域注入前方ルーティング、環境フィードバックからの診断勾配生成、および未知環境における集合最適化のための個別の意味論とトポロジを共進化させる協調更新を含む。
対話、コーディング、Long-context Q&A、数学、エージェントベンチマークの実験では、タスク精度が5~10%向上し、既存のベースラインよりもリソース効率が向上し、自律的なタスク実行におけるHiVAの有効性が確立された。
関連論文リスト
- HEAS: Hierarchical Evolutionary Agent Simulation Framework for Cross-Scale Modeling and Multi-Objective Search [4.807104001943257]
階層シミュレーションエージェント(Hierarchical Simulation Agent, HEAS)は、階層化されたエージェントベースのモデリングを進化的最適化とトーナメント評価で統合するPythonフレームワークである。
HEASは、共有コンテキストを読み書きする決定論的レイヤにスケジュールされた軽量プロセス(ストリーム)の階層としてモデルを表現する。
compact APIとCLIは、シングルオブジェクトとマルチオブジェクトの進化をシミュレートし、最適化し、評価します。
論文 参考訳(メタデータ) (2025-08-21T13:35:46Z) - ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction [84.90394416593624]
大規模言語モデル(LLM)によるエージェント的タスク解決には,多ターン・マルチステップインタラクションが必要である。
既存のシミュレーションベースのデータ生成手法は、複数のエージェント間のコストのかかる自己回帰的相互作用に大きく依存している。
本稿では,高品質なマルチターンエージェント対話を構築するための非自己回帰反復生成フレームワークであるToolACE-MTを提案する。
論文 参考訳(メタデータ) (2025-08-18T07:38:23Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops [3.729242965449096]
本稿では,産業間におけるエージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このフレームワークは、仮説を自律的に生成し、テストすることで、人間の入力なしに最適な性能を達成する。
ケーススタディでは、アウトプットの品質、妥当性、動作性が大幅に改善された。
論文 参考訳(メタデータ) (2024-12-22T20:08:04Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [112.04307762405669]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。