論文の概要: A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops
- arxiv url: http://arxiv.org/abs/2412.17149v1
- Date: Sun, 22 Dec 2024 20:08:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 19:42:48.271441
- Title: A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops
- Title(参考訳): 反復リファインメントとLLM駆動フィードバックループによるエージェントAIソリューションの自動最適化のためのマルチAIエージェントシステム
- Authors: Kamer Ali Yuksel, Hassan Sawaf,
- Abstract要約: 本稿では,産業間におけるエージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このフレームワークは、仮説を自律的に生成し、テストすることで、人間の入力なしに最適な性能を達成する。
ケーススタディでは、アウトプットの品質、妥当性、動作性が大幅に改善された。
- 参考スコア(独自算出の注目度): 3.729242965449096
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Agentic AI systems use specialized agents to handle tasks within complex workflows, enabling automation and efficiency. However, optimizing these systems often requires labor-intensive, manual adjustments to refine roles, tasks, and interactions. This paper introduces a framework for autonomously optimizing Agentic AI solutions across industries, such as NLP-driven enterprise applications. The system employs agents for Refinement, Execution, Evaluation, Modification, and Documentation, leveraging iterative feedback loops powered by an LLM (Llama 3.2-3B). The framework achieves optimal performance without human input by autonomously generating and testing hypotheses to improve system configurations. This approach enhances scalability and adaptability, offering a robust solution for real-world applications in dynamic environments. Case studies across diverse domains illustrate the transformative impact of this framework, showcasing significant improvements in output quality, relevance, and actionability. All data for these case studies, including original and evolved agent codes, along with their outputs, are here: https://anonymous.4open.science/r/evolver-1D11/
- Abstract(参考訳): エージェントAIシステムは、複雑なワークフロー内でタスクを処理するために特殊なエージェントを使用し、自動化と効率性を実現する。
しかしながら、これらのシステムを最適化するには、しばしば、役割、タスク、相互作用を洗練するための労働集約的な手動調整が必要である。
本稿では,NLP駆動型エンタープライズアプリケーションなど業界全体で,エージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このシステムはリファインメント、実行、評価、修正、文書化のためのエージェントを採用し、LLM(Llama 3.2-3B)を動力とする反復的なフィードバックループを活用する。
このフレームワークは、システム構成を改善するための仮説を自動生成し、テストすることで、人間の入力なしに最適な性能を達成する。
このアプローチはスケーラビリティと適応性を高め、動的環境における現実世界のアプリケーションに対して堅牢なソリューションを提供する。
さまざまな領域にわたるケーススタディでは、このフレームワークの変革的な影響が示され、アウトプットの品質、妥当性、実行可能性に大きな改善が示されています。
これらのケーススタディのすべてのデータは、元のエージェントコードと進化したエージェントコード、およびそれらの出力を含む: https://anonymous.4open.science/r/evolver-1D11/
関連論文リスト
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Best-of-N (BON) サンプリングのような推論時間法は、パフォーマンスを改善するための単純で効果的な代替手段を提供する。
本稿では,反復的改良と動的候補評価,検証器による選択を併用した反復的エージェント復号(IAD)を提案する。
論文 参考訳(メタデータ) (2025-04-02T17:40:47Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroActは、言語エージェントのタスク計画と自己反射進化機能を共同で最適化するフレームワークである。
模倣学習と強化学習を統合した2段階共同最適化プロセスを開発した。
RetroActはタスクのパフォーマンスと意思決定プロセスを大幅に改善しています。
論文 参考訳(メタデータ) (2025-03-03T12:54:54Z) - LADs: Leveraging LLMs for AI-Driven DevOps [3.240228178267042]
LADは、どの条件の下で最適化が機能するかを詳細に分析することで、構成最適化の原則化されたアプローチである。
Retrieval-Augmented Generation、Few-Shot Learning、Chain-of-Thought、Feedback-Based Prompt Chainingを活用することで、LADは正確な構成を生成し、デプロイメント障害から反復的に洗練されたシステム設定を学ぶ。
我々の発見は、パフォーマンス、コスト、スケーラビリティのトレードオフに関する重要な洞察を明らかにし、実践者が異なるデプロイメントシナリオに対して適切な戦略を決定するのに役立つ。
論文 参考訳(メタデータ) (2025-02-28T08:12:08Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - SiriuS: Self-improving Multi-agent Systems via Bootstrapped Reasoning [21.94477076055433]
大規模言語モデル(LLM)を利用したマルチエージェントAIシステムは、複雑なタスクの解決にますます応用されている。
マルチエージェントシステムのための自己改善型推論駆動最適化フレームワークであるSiriuSを紹介する。
SiriuSは、自己補正と自己再生の強化のために再利用可能なデータを生成しながら、マルチエージェントのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2025-02-07T09:33:44Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
大規模なマルチベンチマークWebエージェント実験を初めて実施する。
結果は、OpenAIとAnthropicの最新モデルの大きな相違点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - An Empirical Study on LLM-based Agents for Automated Bug Fixing [2.433168823911037]
大規模な言語モデル (LLM) と LLM ベースのエージェントが自動的にバグを修正するために適用されている。
自動バグ修正のためのSWE-bench Liteベンチマークにおいて,プロプライエタリでオープンソースな7つのシステムについて検討した。
論文 参考訳(メタデータ) (2024-11-15T14:19:15Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは、特殊エージェントをマルチエージェントシステムに自動的に拡張するジェネリックメソッドである。
EvoAgent は LLM エージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - AIOS: LLM Agent Operating System [39.59087894012381]
本稿では,LLMベースのエージェント管理のコンテキスト下で,AIOS(LLMベースのAIエージェントオペレーティングシステム)のアーキテクチャを提案する。
エージェントアプリケーションからリソースとLLM固有のサービスをAIOSカーネルに分離することで、LLMベースのエージェントを提供するための新しいアーキテクチャを導入する。
AIOSを使用すると、さまざまなエージェントフレームワークで構築されたエージェントを最大2.1倍高速に実行することができる。
論文 参考訳(メタデータ) (2024-03-25T17:32:23Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。