論文の概要: Scalable Option Learning in High-Throughput Environments
- arxiv url: http://arxiv.org/abs/2509.00338v1
- Date: Sat, 30 Aug 2025 03:42:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.185114
- Title: Scalable Option Learning in High-Throughput Environments
- Title(参考訳): 高スループット環境におけるスケーラブルなオプション学習
- Authors: Mikael Henaff, Scott Fujimoto, Michael Rabbat,
- Abstract要約: 本稿では,既存の階層型手法に比べて25倍高いスループットを実現する,スケーラブルな階層型RLアルゴリズムを提案する。
我々はNetHackの複雑なゲームで200億フレームの経験を生かして階層エージェントを訓練する。
- 参考スコア(独自算出の注目度): 11.889341835130471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, while promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a 25x higher throughput compared to existing hierarchical methods. We train our hierarchical agents using 20 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate our algorithm on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at github.com/facebookresearch/sol.
- Abstract(参考訳): 階層的強化学習(RL)は、長期にわたる効果的な意思決定を可能にする可能性を秘めている。
既存のアプローチは、有望ではあるが、大規模なトレーニングのメリットをまだ認識していない。
本研究では,階層的なRLを高スループット環境へ拡張する上で,いくつかの重要な課題を特定し,解決する。
本稿では,従来の階層型手法に比べて25倍高いスループットを実現する,スケーラブルな階層型RLアルゴリズムであるScalable Option Learning (SOL)を提案する。
我々は、NetHackの複雑なゲームで200億フレームの経験を使って階層的エージェントを訓練し、フラットエージェントをはるかに超え、ポジティブなスケーリング傾向を示す。
また,MiniHack および Mujoco 環境でのアルゴリズムの有効性を検証し,その汎用性を示した。
私たちのコードはgithub.com/facebookresearch/solでオープンソース化されています。
関連論文リスト
- RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning [125.96848846966087]
対話型エージェントとしての大規模言語モデル(LLM)のトレーニングには,ユニークな課題がある。
強化学習は静的タスクの進行を可能にする一方で、マルチターンエージェントRLトレーニングは未探索のままである。
本稿では、軌道レベルのエージェントRLのための一般的なフレームワークであるStarPOを提案し、LLMエージェントのトレーニングと評価のためのモジュールシステムであるRAGENを紹介する。
論文 参考訳(メタデータ) (2025-04-24T17:57:08Z) - Efficient Exploration in Deep Reinforcement Learning: A Novel Bayesian Actor-Critic Algorithm [0.195804735329484]
強化学習(RL)と深層強化学習(DRL)は破壊する可能性があり、我々が世界と対話する方法を既に変えている。
適用可能性の重要な指標の1つは、実世界のシナリオでスケールして機能する能力である。
論文 参考訳(メタデータ) (2024-08-19T14:50:48Z) - To the Max: Reinventing Reward in Reinforcement Learning [1.5498250598583487]
強化学習(RL)では、異なる報酬関数が同じ最適ポリシーを定義することができるが、結果として学習性能は大きく異なる。
我々は、エージェントが累積報酬ではなく最大値を最適化するtextitmax-reward RLを紹介した。
実験では,Gymnasium-Roboticsの2つの目標到達環境における最大回帰RLアルゴリズムの性能について検討した。
論文 参考訳(メタデータ) (2024-02-02T12:29:18Z) - Scaling Laws for Imitation Learning in Single-Agent Games [28.257046559127875]
我々は,モデルとデータサイズを慎重にスケールアップすることで,シングルエージェントゲームにおける模倣学習環境に類似した改善がもたらされるかどうかを検討する。
われわれはまずAtariのさまざまなゲームについて実験を行い、その後NetHackの非常に挑戦的なゲームに焦点を当てた。
IL損失と平均戻り値は計算予算とスムーズに一致し,相関関係が強く,計算最適ILエージェントの訓練には電力法則が適用されることがわかった。
論文 参考訳(メタデータ) (2023-07-18T16:43:03Z) - A Tutorial on Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges [51.699348215510575]
強化学習(Reinforcement Learning, RL)は、インテリジェントエージェントが環境と対話して長期的な目標を達成する、一般的な機械学習パラダイムである。
励ましの結果にもかかわらず、ディープニューラルネットワークベースのバックボーンは、専門家が高いセキュリティと信頼性が不可欠である現実的なシナリオにおいて、訓練されたエージェントを信頼し、採用することを妨げるブラックボックスとして広く見なされている。
この問題を緩和するために、本質的な解釈可能性やポストホックな説明可能性を構築することにより、知的エージェントの内部動作に光を放つための大量の文献が提案されている。
論文 参考訳(メタデータ) (2022-11-12T13:52:06Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z) - The NetHack Learning Environment [79.06395964379107]
本稿では、強化学習研究のための手続き的に生成されたローグのような環境であるNetHack Learning Environment(NLE)を紹介する。
我々は,NetHackが,探索,計画,技術習得,言語条件付きRLといった問題に対する長期的な研究を促進するのに十分複雑であると主張している。
我々は,分散されたDeep RLベースラインとランダムネットワーク蒸留探索を用いて,ゲームの初期段階における実験的な成功を示す。
論文 参考訳(メタデータ) (2020-06-24T14:12:56Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。