論文の概要: FLUID: A Fine-Grained Lightweight Urban Signalized-Intersection Dataset of Dense Conflict Trajectories
- arxiv url: http://arxiv.org/abs/2509.00497v1
- Date: Sat, 30 Aug 2025 13:38:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.258664
- Title: FLUID: A Fine-Grained Lightweight Urban Signalized-Intersection Dataset of Dense Conflict Trajectories
- Title(参考訳): FLUID:Dense Conflict Trajectoriesの細粒化軽量都市間信号データセット
- Authors: Yiyang Chen, Zhigang Wu, Guohong Zheng, Xuesong Wu, Liwen Xu, Haoyuan Tang, Zhaocheng He, Haipeng Zeng,
- Abstract要約: 本研究は,典型的な都市信号化交差点における高密度コンフリクトを捕捉する微粒な軌跡データセットを含むFLUIDを紹介する。
FLUIDは3つの異なる交差点をカバーしており、録音時間はおよそ5時間で、8つのカテゴリに2万以上のTPがある。
データセットは毎分平均で2台の車両が衝突し、全自動車の約25%が関与している。
- 参考スコア(独自算出の注目度): 13.847243701930879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The trajectory data of traffic participants (TPs) is a fundamental resource for evaluating traffic conditions and optimizing policies, especially at urban intersections. Although data acquisition using drones is efficient, existing datasets still have limitations in scene representativeness, information richness, and data fidelity. This study introduces FLUID, comprising a fine-grained trajectory dataset that captures dense conflicts at typical urban signalized intersections, and a lightweight, full-pipeline framework for drone-based trajectory processing. FLUID covers three distinct intersection types, with approximately 5 hours of recording time and featuring over 20,000 TPs across 8 categories. Notably, the dataset averages two vehicle conflicts per minute, involving roughly 25% of all motor vehicles. FLUID provides comprehensive data, including trajectories, traffic signals, maps, and raw videos. Comparison with the DataFromSky platform and ground-truth measurements validates its high spatio-temporal accuracy. Through a detailed classification of motor vehicle conflicts and violations, FLUID reveals a diversity of interactive behaviors, demonstrating its value for human preference mining, traffic behavior modeling, and autonomous driving research.
- Abstract(参考訳): 交通参加者の軌道データ(TP)は交通状況の評価と政策の最適化、特に都市交差点における基本的資源である。
ドローンによるデータ取得は効率的だが、既存のデータセットにはシーンの表現性、情報豊かさ、データの忠実さに制限がある。
本研究は,典型的な都市信号化交差点における高密度コンフリクトを捕捉する細粒な軌跡データセットと,ドローンによる軌跡処理のための軽量でフルパイプの枠組みを含むFLUIDについて紹介する。
FLUIDは3つの異なる交差点をカバーしており、録音時間はおよそ5時間で、8つのカテゴリに2万以上のTPがある。
特に、このデータセットは1分間に2台の車両の衝突を平均し、全自動車の約25%が関与している。
FLUIDはトラジェクトリ、交通信号、地図、生のビデオを含む包括的なデータを提供する。
DataFromSkyプラットフォームと地上構造測定との比較により,その時空間精度が向上した。
自動車の衝突や違反の詳細な分類を通じて、FLUIDは対話的な行動の多様性を明らかにし、人間の好みのマイニング、交通行動モデリング、自律運転研究の価値を明らかにしている。
関連論文リスト
- DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environment [2.780698399474917]
DRone由来のインテリジェンス・フォー・トラヒック・アナリティクス(DRIFT)データセットは、高度約250mのドローンビデオから体系的に収集された大規模な都市交通データセットである。
DRIFTは、方向情報を含む高解像度の車両軌道を提供し、ビデオ同期とオルトマップアライメントによって処理される。
このデータセットは,交通流解析やシミュレーション研究などの学術研究や実用化に大きく貢献することが期待されている。
論文 参考訳(メタデータ) (2025-04-15T09:43:13Z) - OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users [41.63444034391952]
本研究は,交差点,道路セグメント,都市村など,様々なシナリオをカバーするOnSiteVRUデータセットを開発した。
データセットは、自動車、電動自転車、人力自転車の軌道データを提供し、約17,429の軌道を0.04秒精度で収集する。
その結果、VRU_DataはVRU密度とシーンカバレッジの点で従来のデータセットよりも優れており、VRUの行動特性をより包括的に表現できることがわかった。
論文 参考訳(メタデータ) (2025-03-30T08:44:55Z) - Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
本稿では,自動走行車(AV)と交通制御装置,特に信号機と停止標識の相互作用を総合的に把握するデータセットの開発について述べる。
我々の研究は、AVがこれらの交通制御装置をどのようにナビゲートするかの実際の軌跡データを提供することによって、既存の文献における重要なギャップに対処する。
本研究では,交通信号を用いた37,000以上のインスタンスと,停止標識を用いた44,000のインスタンスを組み込んで,関連する対話軌跡データをMotionデータセットから同定し抽出する手法を提案する。
論文 参考訳(メタデータ) (2025-01-21T22:59:50Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
市内の交差点は、怪我や致命的な事故で最も重要な交通エリアである。
われわれは、ドイツのインテリジェントな公共都市交差点と視覚センサー技術を使用している。
得られたデータセットは8時間の計測データから構成される。
論文 参考訳(メタデータ) (2023-07-12T13:46:20Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
V2Xネットワークは、自動運転における協調的な認識を可能にしている。
データセットの欠如は、協調認識アルゴリズムの開発を著しく妨げている。
DOLPHINS: cOllaborative Perception を実現するためのデータセットである Harmonious と Inter connected Self-driving をリリースする。
論文 参考訳(メタデータ) (2022-07-15T17:07:07Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。