論文の概要: Superposition in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2509.00928v1
- Date: Sun, 31 Aug 2025 16:43:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.467381
- Title: Superposition in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおける重ね合わせ
- Authors: Lukas Pertl, Han Xuanyuan, Pietro Liò,
- Abstract要約: グラフニューラルネットワーク(GNN)の潜在空間において,複数の特徴による方向の共有に関する重ね合わせについて検討する。
GCN/GIN/GAT全体では、幅の増大が相パターンを重複させ、トポロジのインプリントがノードレベルの特徴に重なり、部分的なリミックスがタスク整列グラフ軸にリミックスされる。
- 参考スコア(独自算出の注目度): 11.888196115363298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpreting graph neural networks (GNNs) is difficult because message passing mixes signals and internal channels rarely align with human concepts. We study superposition, the sharing of directions by multiple features, directly in the latent space of GNNs. Using controlled experiments with unambiguous graph concepts, we extract features as (i) class-conditional centroids at the graph level and (ii) linear-probe directions at the node level, and then analyze their geometry with simple basis-invariant diagnostics. Across GCN/GIN/GAT we find: increasing width produces a phase pattern in overlap; topology imprints overlap onto node-level features that pooling partially remixes into task-aligned graph axes; sharper pooling increases axis alignment and reduces channel sharing; and shallow models can settle into metastable low-rank embeddings. These results connect representational geometry with concrete design choices (width, pooling, and final-layer activations) and suggest practical approaches for more interpretable GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の解釈は、メッセージパッシングが信号と内部チャネルを混在させるため困難である。
我々は,複数の特徴による方向の共有である重ね合わせについて,GNNの潜在空間で直接研究する。
不明瞭なグラフ概念を用いた制御実験を用いて特徴を抽出する
(i)グラフレベルでのクラス条件セントロイド及び
(II) ノードレベルでの線形プローブ方向を解析し、その幾何学を単純な基底不変の診断法を用いて解析する。
GCN/GIN/GAT全体では、幅の増大と位相パターンの重なり、トポロジのインプリントがノードレベルの特徴に重なり、部分的なリミックスがタスク整列グラフ軸に行われること、シャープなプーリングが軸のアライメントを高めてチャネル共有を低減すること、浅いモデルが準安定な低ランク埋め込みに落ち着くこと、などが分かる。
これらの結果は、表現幾何学と具体的な設計選択(幅、プーリング、最終層活性化)を結びつけ、より解釈可能なGNNに対する実践的なアプローチを提案する。
関連論文リスト
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
グラフニューラルネットワーク(GNN)は、従来、非指向グラフ上の拡散に似たメッセージパッシング機構を採用している。
私たちのキーとなる洞察は、ファジィエッジ方向をグラフのエッジに割り当てることです。
ファジィエッジを持つグラフを学習するためのフレームワークとして,Continuous Edge Direction (CoED) GNNを提案する。
論文 参考訳(メタデータ) (2024-10-18T01:34:35Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。