論文の概要: ADMP-GNN: Adaptive Depth Message Passing GNN
- arxiv url: http://arxiv.org/abs/2509.01170v1
- Date: Mon, 01 Sep 2025 06:42:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.563614
- Title: ADMP-GNN: Adaptive Depth Message Passing GNN
- Title(参考訳): ADMP-GNN: 適応的な深さメッセージパッシングGNN
- Authors: Yassine Abbahaddou, Fragkiskos D. Malliaros, Johannes F. Lutzeyer, Michalis Vazirgiannis,
- Abstract要約: グラフニューラルネットワーク(GNN)の重要な特徴は、すべてのノードに対して固定数のメッセージパスステップを使用することである。
本稿では,各ノードのメッセージパッシング層数を動的に調整する新しいフレームワークであるAdaptive Depth Message Passing GNN (ADMP-GNN)を提案する。
我々は,ノード分類タスク上でADMP-GNNを評価し,ベースラインGNNモデルの性能改善を観察する。
- 参考スコア(独自算出の注目度): 27.795209620648198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have proven to be highly effective in various graph learning tasks. A key characteristic of GNNs is their use of a fixed number of message-passing steps for all nodes in the graph, regardless of each node's diverse computational needs and characteristics. Through empirical real-world data analysis, we demonstrate that the optimal number of message-passing layers varies for nodes with different characteristics. This finding is further supported by experiments conducted on synthetic datasets. To address this, we propose Adaptive Depth Message Passing GNN (ADMP-GNN), a novel framework that dynamically adjusts the number of message passing layers for each node, resulting in improved performance. This approach applies to any model that follows the message passing scheme. We evaluate ADMP-GNN on the node classification task and observe performance improvements over baseline GNN models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフ学習タスクにおいて非常に効果的であることが証明されている。
GNNのキーとなる特徴は、各ノードの様々な計算ニーズや特性に関わらず、グラフ内のすべてのノードに対して、固定数のメッセージパスステップを使用することである。
実世界の経験的データ分析により,異なる特徴を持つノードに対して最適なメッセージ通過層数が異なることを示す。
この発見は、合成データセットで実施された実験によってさらに支持されている。
そこで本研究では,各ノードのメッセージパッシング層数を動的に調整し,性能を向上する新しいフレームワークであるAdaptive Depth Message Passing GNN(ADMP-GNN)を提案する。
このアプローチは、メッセージパッシングスキームに従うあらゆるモデルに適用されます。
我々は,ノード分類タスク上でADMP-GNNを評価し,ベースラインGNNモデルの性能改善を観察する。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
グラフニューラルネットワーク(GNN)は,グラフベースのデータから学ぶ上で大きな成功を収めている。
現在のGNNのキーとなるメカニズムはメッセージパッシングであり、ノードの機能は、その近隣から渡される情報に基づいて更新される。
本研究では,局所的特徴符号化(CLFE)を提案する。
論文 参考訳(メタデータ) (2024-05-08T01:51:19Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
グラフニューラルネットワーク(GNN)は、レコメンデーションを含むさまざまなグラフ学習タスクにおいて、優れたパフォーマンスを示している。
近年、GNNの表現性を調査し、メッセージパッシングGNNがWeisfeiler-Lehmanテストと同じくらい強力であることを実証している。
本稿では,GNNがノード間の構造的距離を捉える能力を評価するために,位相的近接度尺度を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:17:34Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
グラフニューラルネットワーク(GNN)は、近隣情報収集を通じてグラフ構造化データから学習することができる。
レイヤーの数が増えるにつれて、ノード表現は区別不能になり、オーバー・スムーシング(over-smoothing)と呼ばれる。
我々は,textbfPosterior-Sampling-based, Node-distinguish Residual Module (PSNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
ノード分類のためのGNNのトレーニングのための新しい目的語を提案する。
我々の第一項は、ノードとラベルの特徴間の相互情報を最大化することを目的としている。
第2項は予測写像における異方的滑らか性を促進する。
論文 参考訳(メタデータ) (2022-11-29T23:25:14Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。