論文の概要: Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification
- arxiv url: http://arxiv.org/abs/2211.16631v1
- Date: Tue, 29 Nov 2022 23:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 18:09:08.296704
- Title: Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification
- Title(参考訳): 各ノード数: ノード分類におけるグラフニューラルネットワークのトレーニングを改善する
- Authors: Moshe Eliasof, Eldad Haber, Eran Treister
- Abstract要約: ノード分類のためのGNNのトレーニングのための新しい目的語を提案する。
我々の第一項は、ノードとラベルの特徴間の相互情報を最大化することを目的としている。
第2項は予測写像における異方的滑らか性を促進する。
- 参考スコア(独自算出の注目度): 9.539495585692007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are prominent in handling sparse and
unstructured data efficiently and effectively. Specifically, GNNs were shown to
be highly effective for node classification tasks, where labelled information
is available for only a fraction of the nodes. Typically, the optimization
process, through the objective function, considers only labelled nodes while
ignoring the rest. In this paper, we propose novel objective terms for the
training of GNNs for node classification, aiming to exploit all the available
data and improve accuracy. Our first term seeks to maximize the mutual
information between node and label features, considering both labelled and
unlabelled nodes in the optimization process. Our second term promotes
anisotropic smoothness in the prediction maps. Lastly, we propose a
cross-validating gradients approach to enhance the learning from labelled data.
Our proposed objectives are general and can be applied to various GNNs and
require no architectural modifications. Extensive experiments demonstrate our
approach using popular GNNs like GCN, GAT and GCNII, reading a consistent and
significant accuracy improvement on 10 real-world node classification datasets.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、スパースおよび非構造化データの効率的かつ効果的に処理する。
特に、GNNはノード分類タスクに非常に効果的であることが示され、ラベル付き情報はノードのごく一部でしか利用できない。
通常、最適化プロセスは目的関数を通じてラベル付きノードのみを考慮し、残りは無視する。
本稿では、ノード分類のためのGNNのトレーニングのための新しい目的語を提案し、利用可能なすべてのデータを活用し、精度を向上させることを目的とする。
最初の用語は、最適化プロセスにおけるラベル付きノードとラベル付きノードの両方を考慮して、ノードとラベル付き特徴の相互情報を最大化することを目指しています。
第2項は予測写像における異方性平滑性を促進する。
最後に,ラベル付きデータからの学習を強化するために,相互評価型勾配法を提案する。
提案手法は汎用的であり,様々なGNNに適用可能であり,アーキテクチャ変更は不要である。
大規模な実験では,GCN,GAT,GCNIIなどの一般的なGNNを用いて,実世界のノード分類データセット10件について一貫した精度向上を図った。
関連論文リスト
- GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification [1.857645719601748]
グラフニューラルネットワーク(GNN)は、グラフデータの表現を学習するための強力なモデルとして登場した。
我々は,最も表現力の高いGNNでさえ,ノード属性や明示的なラベル情報を入力として使用せずに学習できないことを示す。
本稿では,ノードの機能,ラベル,位置情報を統合したGNN-MultiFixという簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T12:59:39Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
グラフニューラルネットワーク(GNN)は,グラフベースのデータから学ぶ上で大きな成功を収めている。
現在のGNNのキーとなるメカニズムはメッセージパッシングであり、ノードの機能は、その近隣から渡される情報に基づいて更新される。
本研究では,局所的特徴符号化(CLFE)を提案する。
論文 参考訳(メタデータ) (2024-05-08T01:51:19Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。