論文の概要: Geometric origin of adversarial vulnerability in deep learning
- arxiv url: http://arxiv.org/abs/2509.01235v1
- Date: Mon, 01 Sep 2025 08:23:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.595825
- Title: Geometric origin of adversarial vulnerability in deep learning
- Title(参考訳): 深層学習における敵対的脆弱性の幾何学的起源
- Authors: Yixiong Ren, Wenkang Du, Jianhui Zhou, Haiping Huang,
- Abstract要約: 本稿では,階層的局所学習を活用して深層ニューラルネットワークの内部表現を彫刻する幾何学的深層学習フレームワークを提案する。
このフレームワークは、特徴空間におけるクラス内コンパクト性とクラス間分離を促進し、多様体の滑らかさと、白か黒のボックスアタックに対する対角的ロバスト性をもたらす。
- 参考スコア(独自算出の注目度): 3.6083663756400095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to balance training accuracy and adversarial robustness has become a challenge since the birth of deep learning. Here, we introduce a geometry-aware deep learning framework that leverages layer-wise local training to sculpt the internal representations of deep neural networks. This framework promotes intra-class compactness and inter-class separation in feature space, leading to manifold smoothness and adversarial robustness against white or black box attacks. The performance can be explained by an energy model with Hebbian coupling between elements of the hidden representation. Our results thus shed light on the physics of learning in the direction of alignment between biological and artificial intelligence systems. Using the current framework, the deep network can assimilate new information into existing knowledge structures while reducing representation interference.
- Abstract(参考訳): ディープラーニングの誕生以来、トレーニングの正確さと敵の頑健さのバランスをとる方法が課題となっている。
本稿では,階層的局所学習を活用して深層ニューラルネットワークの内部表現を彫刻する幾何学的学習フレームワークを提案する。
この枠組みは、特徴空間におけるクラス内コンパクト性とクラス間分離を促進し、多様体の滑らかさと、白か黒のボックス攻撃に対する対角的ロバスト性をもたらす。
この性能は、隠れ表現の要素間のヘビアン結合を持つエネルギーモデルによって説明できる。
その結果,生物と人工知能の連携の方向における学習の物理学に光を当てた。
現在のフレームワークを使用して、ディープネットワークは、表現干渉を低減しつつ、新しい情報を既存の知識構造に同化することができる。
関連論文リスト
- Concept-Guided Interpretability via Neural Chunking [64.6429903327095]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
神経集団レベルで繰り返しチャンクを抽出する3つの方法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - Exploiting Chaotic Dynamics as Deep Neural Networks [1.9282110216621833]
カオスの本質は、様々な最先端のディープニューラルネットワークで見ることができる。
本フレームワークは精度,収束速度,効率の点で優れた結果を提示する。
この研究は、情報処理において長い間見過ごされてきたカオスの統合のための新しい道を提供する。
論文 参考訳(メタデータ) (2024-05-29T22:03:23Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
ニューラルネットワークは、敵の攻撃として現れる小さな非ランダムな摂動に固有の脆弱性を示す。
この機構と量子物理学の不確実性原理の間に数学的に一致し、予想外の学際性に光を当てる。
論文 参考訳(メタデータ) (2024-02-16T02:11:27Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
データに適合するように訓練されたニューラルネットワークの機能特性を特徴付ける数学的枠組みを提案する。
このフレームワークをサポートする主要な数学的ツールは、変換領域スパース正規化、計算トモグラフィーのラドン変換、近似理論である。
このフレームワークは、ニューラルネットワークトレーニングにおける重量減衰正則化の効果、ネットワークアーキテクチャにおけるスキップ接続と低ランク重量行列の使用、ニューラルネットワークにおける空間性の役割、そしてニューラルネットワークが高次元問題でうまく機能する理由を説明する。
論文 参考訳(メタデータ) (2023-01-23T17:16:21Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - A Note on the Implicit Bias Towards Minimal Depth of Deep Neural
Networks [11.739219085726006]
これらのシステムの成功を可能にする中心的な側面は、広い浅いものではなく、深いモデルを訓練する能力である。
深層ニューラルネットワークのトレーニングは、浅いニューラルネットワークに対して繰り返し、優れたパフォーマンスを達成する一方で、表現学習における深度の役割の理解はいまだに欠如している。
論文 参考訳(メタデータ) (2022-02-18T05:21:28Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
ニューラルネットワークアーキテクチャの"幅"が破滅的忘れに及ぼす影響について検討する。
ネットワークの学習力学を様々な観点から研究する。
論文 参考訳(メタデータ) (2021-10-21T23:49:23Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。