論文の概要: Annotation and modeling of emotions in a textual corpus: an evaluative approach
- arxiv url: http://arxiv.org/abs/2509.01260v1
- Date: Mon, 01 Sep 2025 08:50:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.60908
- Title: Annotation and modeling of emotions in a textual corpus: an evaluative approach
- Title(参考訳): テキストコーパスにおける感情の注釈とモデル化--評価的アプローチ
- Authors: Jonas Noblet,
- Abstract要約: 本稿では,感情に対する評価的アプローチに従って手動でアノテートした産業用コーパスについて検討する。
ラベル付け過程をモデル化することは可能であり,その変動性は根底にある言語的特徴によってもたらされることを示す。
その結果,言語モデルでは,評価基準に基づく感情的状況の識別が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion is a crucial phenomenon in the functioning of human beings in society. However, it remains a widely open subject, particularly in its textual manifestations. This paper examines an industrial corpus manually annotated following an evaluative approach to emotion. This theoretical framework, which is currently underutilized, offers a different perspective that complements traditional approaches. Noting that the annotations we collected exhibit significant disagreement, we hypothesized that they nonetheless follow stable statistical trends. Using language models trained on these annotations, we demonstrate that it is possible to model the labeling process and that variability is driven by underlying linguistic features. Conversely, our results indicate that language models seem capable of distinguishing emotional situations based on evaluative criteria.
- Abstract(参考訳): 感情は社会における人間の機能において重要な現象である。
しかし、特に本文の表象において、広く公開されている主題である。
本稿では,感情に対する評価的アプローチに従って手動でアノテートした産業用コーパスについて検討する。
現在使われていないこの理論フレームワークは、従来のアプローチを補完する異なる視点を提供する。
収集したアノテーションには大きな相違点があることに留意し,安定な統計傾向をたどる仮説を立てた。
これらのアノテーションに基づいて訓練された言語モデルを用いて、ラベル付けプロセスのモデル化が可能であり、変数は基礎となる言語的特徴によって駆動されることを示す。
逆に, 言語モデルでは, 評価基準に基づく感情的状況の識別が可能であることが示唆された。
関連論文リスト
- Mechanistic Interpretability of Emotion Inference in Large Language Models [16.42503362001602]
感情表現は大規模言語モデルにおいて特定の領域に機能的に局所化されていることを示す。
我々は,環境刺激の評価から感情が出現することを示すための認知的評価理論を導いた。
この研究は、因果的に介入し、感情的なテキスト生成を正確に形作る新しい方法を強調している。
論文 参考訳(メタデータ) (2025-02-08T08:11:37Z) - Natural Language Decompositions of Implicit Content Enable Better Text Representations [52.992875653864076]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Unifying the Discrete and Continuous Emotion labels for Speech Emotion
Recognition [28.881092401807894]
音声からの感情検出のためのパラ言語分析では、感情は離散的または次元的(連続的な評価)ラベルと同一視されている。
本研究では,連続的感情特性と離散的感情特性を共同で予測するモデルを提案する。
論文 参考訳(メタデータ) (2022-10-29T16:12:31Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
視覚感情分析(VEA)は、人々の感情を異なる視覚刺激に向けて予測することを目的としている。
既存の手法では、集団投票プロセスにおいて固有の主観性を無視して、統合されたネットワークにおける視覚的感情分布を予測することが多い。
視覚的感情分布の主観性を調べるために,新しいテキストサブジェクティビティ評価ネットワーク(SAMNet)を提案する。
論文 参考訳(メタデータ) (2022-07-25T02:20:03Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Sentiment Analysis with Contextual Embeddings and Self-Attention [3.0079490585515343]
自然言語では、単語や句の意図された意味はしばしば暗黙的であり、文脈に依存する。
本稿では,文脈埋め込みと自己認識機構を用いた感情分析の簡易かつ効果的な手法を提案する。
形態学的にリッチなポーランド語とドイツ語を含む3つの言語の実験結果から、我々のモデルは最先端のモデルに匹敵するか、さらに優れています。
論文 参考訳(メタデータ) (2020-03-12T02:19:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。