論文の概要: Acoustic Interference Suppression in Ultrasound images for Real-Time HIFU Monitoring Using an Image-Based Latent Diffusion Model
- arxiv url: http://arxiv.org/abs/2509.01557v1
- Date: Mon, 01 Sep 2025 15:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.752936
- Title: Acoustic Interference Suppression in Ultrasound images for Real-Time HIFU Monitoring Using an Image-Based Latent Diffusion Model
- Title(参考訳): 画像ベース潜時拡散モデルを用いた実時間HIFUモニタリングのための超音波画像の音響干渉抑制
- Authors: Dejia Cai, Yao Ran, Kun Yang, Xinwang Shi, Yingying Zhou, Kexian Wu, Yang Xu, Yi Hu, Xiaowei Zhou,
- Abstract要約: HIFU-ILDiffは、HIFUによる超音波画像の干渉を抑制するための、新しいディープラーニングベースのアプローチである。
HIFU治療中のリアルタイムモニタリングのための超音波ガイド画像におけるHIFU干渉を識別することができる。
- 参考スコア(独自算出の注目度): 18.946487365558273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-Intensity Focused Ultrasound (HIFU) is a non-invasive therapeutic technique widely used for treating various diseases. However, the success and safety of HIFU treatments depend on real-time monitoring, which is often hindered by interference when using ultrasound to guide HIFU treatment. To address these challenges, we developed HIFU-ILDiff, a novel deep learning-based approach leveraging latent diffusion models to suppress HIFU-induced interference in ultrasound images. The HIFU-ILDiff model employs a Vector Quantized Variational Autoencoder (VQ-VAE) to encode noisy ultrasound images into a lower-dimensional latent space, followed by a latent diffusion model that iteratively removes interference. The denoised latent vectors are then decoded to reconstruct high-resolution, interference-free ultrasound images. We constructed a comprehensive dataset comprising 18,872 image pairs from in vitro phantoms, ex vivo tissues, and in vivo animal data across multiple imaging modalities and HIFU power levels to train and evaluate the model. Experimental results demonstrate that HIFU-ILDiff significantly outperforms the commonly used Notch Filter method, achieving a Structural Similarity Index (SSIM) of 0.796 and Peak Signal-to-Noise Ratio (PSNR) of 23.780 compared to SSIM of 0.443 and PSNR of 14.420 for the Notch Filter under in vitro scenarios. Additionally, HIFU-ILDiff achieves real-time processing at 15 frames per second, markedly faster than the Notch Filter's 5 seconds per frame. These findings indicate that HIFU-ILDiff is able to denoise HIFU interference in ultrasound guiding images for real-time monitoring during HIFU therapy, which will greatly improve the treatment precision in current clinical applications.
- Abstract(参考訳): 高強度集束超音波(英: High-Intensity Focused Ultrasound、HIFU)は、様々な疾患の治療に広く用いられている非侵襲的治療法である。
しかし、HIFU治療の成功と安全性はリアルタイムモニタリングに依存しており、HIFU治療を誘導するために超音波を用いた場合、干渉によってしばしば妨げられる。
これらの課題に対処するため, HIFU-ILDiffを開発した。
HIFU-ILDiffモデルでは、Vector Quantized Variational Autoencoder (VQ-VAE) を用いてノイズの多い超音波画像を低次元の潜伏空間に符号化し、次に反復的に干渉を除去する潜伏拡散モデルを用いる。
遅延ベクトルはデコードされ、高分解能で干渉のない超音波像を再構成する。
生体内ファントム18,872枚と生体外組織18,872枚からなる包括的データセットを構築し,複数の画像モダリティとHIFUパワーレベルにまたがる動物データを用いて,モデルを訓練し評価した。
実験の結果,HIFU-ILDiff はNotch Filter 法に比べて,0.796 の構造類似度指数 (SSIM) と23.780 のピーク信号対雑音比 (PSNR) を,in vitro シナリオでは0.443 の SSIM と14.420 のPSNR よりも大幅に優れていた。
さらに、HIFU-ILDiffは毎秒15フレームのリアルタイム処理を実現しており、Notchフィルタの1フレームあたり5秒よりも大幅に高速である。
これらの結果から,HIFU-ILDiffはHIFUの超音波ガイド画像におけるHIFU干渉を脱ノイズし,HIFU治療中のリアルタイムモニタリングが可能であり,現在の臨床応用における治療精度を大幅に向上させる可能性が示唆された。
関連論文リスト
- High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework [58.07923338080814]
機能的神経側頭葉イメージングはマッピングに例外的な解像度を提供する。
しかし、その実践的応用は重大な課題によって妨げられている。
データ不足、倫理的考慮、信号劣化などが含まれる。
論文 参考訳(メタデータ) (2025-05-23T15:27:17Z) - Ultrasound Lung Aeration Map via Physics-Aware Neural Operators [78.6077820217471]
肺超音波は、急性肺疾患や慢性肺疾患を診断するクリニックにおいて増加するモダリティである。
超音波による空気透過性の低下に起因する胸膜界面からの複雑な逆流によって複雑になる。
RFデータから肺エアレーションマップを直接再構成するAIモデルLUNAを提案する。
論文 参考訳(メタデータ) (2025-01-02T09:24:34Z) - PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
超音波イメージングシステムのインパルス機能はポイントスプレッド機能(PSF)と呼ばれ、画像形成過程における反射体の空間分布と結びついている。
我々は、より一般的なBモード画像を直接扱う、モデル付きPSFを用いた物理ベースのデコンボリューションプロセスを導入する。
Inlicit Neural Representations (INR) を利用することで、空間位置からそれぞれのエコー原性値への連続的なマッピングを学習し、離散化された画像空間を効果的に補償する。
論文 参考訳(メタデータ) (2024-08-07T09:52:30Z) - Ultrasound Imaging based on the Variance of a Diffusion Restoration Model [7.360352432782388]
本稿では, 線形直列モデルと学習に基づく先行モデルを組み合わせたハイブリッド再構成手法を提案する。
我々は,高品質な画像再構成を実現するための分散イメージング手法の有効性を実証し,合成,in-vitro,in-vivoデータの実験を行った。
論文 参考訳(メタデータ) (2024-03-22T16:10:38Z) - UNICORN: Ultrasound Nakagami Imaging via Score Matching and Adaptation [59.91293113930909]
超音波による組織散乱の可視化と定量化は中上イメージングが約束している。
既存の手法では、最適なウィンドウサイズの選択に苦労し、推定の不安定性に悩まされている。
提案手法は,中上パラメータ推定のための高精度でクローズドな形状推定器であるUNICORNを提案する。
論文 参考訳(メタデータ) (2024-03-10T18:05:41Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - An Approach Towards Physics Informed Lung Ultrasound Image Scoring
Neural Network for Diagnostic Assistance in COVID-19 [0.0]
肺超音波(LUS)における胸膜下領域の音響伝搬に基づく特徴抽出のための新しいアプローチが提示された。
LUSNetと呼ばれるニューラルネットワークは、LUSイメージを、新型コロナウイルスの進行を追跡するために、肺感染症の重症度の異なる5つのクラスに分類するように訓練されている。
新型コロナウイルスの患者10名に対する全回復期間に対するLUS画像のアプローチに関する詳細な分析では、平均5倍のクロスバリデーション精度、感度、特異性はそれぞれ5000コマで97%、93%、98%となっている。
論文 参考訳(メタデータ) (2021-06-13T13:01:53Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。