論文の概要: Entropy-Driven Curriculum for Multi-Task Training in Human Mobility Prediction
- arxiv url: http://arxiv.org/abs/2509.01613v1
- Date: Mon, 01 Sep 2025 16:46:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.78562
- Title: Entropy-Driven Curriculum for Multi-Task Training in Human Mobility Prediction
- Title(参考訳): マルチタスク学習のためのエントロピー駆動型カリキュラム
- Authors: Tianye Fang, Xuanshu Luo, Martin Werner,
- Abstract要約: 本稿では,エントロピー駆動型カリキュラムとマルチタスク学習を統合した統合学習フレームワークを提案する。
GEO-BLEU (0.354) とDTW (26.15) を2.92倍の収束速度で測定した。
- 参考スコア(独自算出の注目度): 0.9176056742068813
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing availability of big mobility data from ubiquitous portable devices enables human mobility prediction through deep learning approaches. However, the diverse complexity of human mobility data impedes model training, leading to inefficient gradient updates and potential underfitting. Meanwhile, exclusively predicting next locations neglects implicit determinants, including distances and directions, thereby yielding suboptimal prediction results. This paper presents a unified training framework that integrates entropy-driven curriculum and multi-task learning to address these challenges. The proposed entropy-driven curriculum learning strategy quantifies trajectory predictability based on Lempel-Ziv compression and organizes training from simple to complex for faster convergence and enhanced performance. The multi-task training simultaneously optimizes the primary location prediction alongside auxiliary estimation of movement distance and direction for learning realistic mobility patterns, and improve prediction accuracy through complementary supervision signals. Extensive experiments conducted in accordance with the HuMob Challenge demonstrate that our approach achieves state-of-the-art performance on GEO-BLEU (0.354) and DTW (26.15) metrics with up to 2.92-fold convergence speed compared to training without curriculum learning.
- Abstract(参考訳): ユビキタスポータブルデバイスからのビッグデータの可用性の向上により、ディープラーニングアプローチによる人間のモビリティ予測が可能になる。
しかしながら、人間のモビリティデータの多様さはモデルのトレーニングを妨げるため、非効率な勾配更新と潜在的な不適合につながる。
一方、次の位置を排他的に予測することは、距離や方向を含む暗黙の行列式を無視するので、最適以下の予測結果が得られる。
本稿では,エントロピー駆動型カリキュラムとマルチタスク学習を統合し,これらの課題に対処する統合トレーニングフレームワークを提案する。
提案したエントロピー駆動型カリキュラム学習戦略は,Lempel-Ziv圧縮に基づく軌道予測可能性の定量化と,より高速な収束と性能向上のために,単純から複雑へのトレーニングの編成を行う。
マルチタスクトレーニングでは,移動距離と方向の補助的推定とともに主位置予測を同時に最適化し,相補的な監視信号による予測精度を向上させる。
HuMob Challenge に従って実施した大規模な実験により,GEO-BLEU (0.354) とDTW (26.15) の精度を,カリキュラムなしの学習と比較して最大2.92倍の収束速度で達成できることが実証された。
関連論文リスト
- Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
16時間から8192時間に及ぶ内部駆動データセット上での簡易エンド・ツー・エンド駆動アーキテクチャの性能評価を行った。
具体的には、目標の性能向上を達成するために、どの程度のトレーニングデータが必要かを調査する。
論文 参考訳(メタデータ) (2025-04-06T03:23:48Z) - ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction [6.0588503913405045]
我々はST-MoE-BERTと呼ばれる人間の移動パターンを予測する頑健な手法を提案する。
本手法は,Mixture-of-ExpertsアーキテクチャとBERTモデルを統合し,複雑な移動力学を捉える。
本稿では,GEO-BLEUおよびDTWにおける提案手法の有効性について述べる。
論文 参考訳(メタデータ) (2024-10-18T00:32:18Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - Multiple-level Point Embedding for Solving Human Trajectory Imputation
with Prediction [7.681950806902859]
空間性は、人間の移動データを含む多くの軌跡データセットで一般的な問題である。
この研究は、より良い結果を得るために、計算と予測の学習プロセスが互いの恩恵を受けるかどうかを調査する予定である。
論文 参考訳(メタデータ) (2023-01-11T14:13:23Z) - Predicting Human Mobility via Self-supervised Disentanglement Learning [21.61423193132924]
本稿では,次のPOI予測問題に対処するため,SSDLと呼ばれる新しい解を提案する。
本研究では,人間の本質的な周期性と常に変化する意図の理解を高めるために,二つの現実的な軌道拡張手法を提案する。
4つの実世界のデータセットで実施された大規模な実験により、提案したSSDLは最先端のアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-11-17T16:17:22Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。