論文の概要: ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction
- arxiv url: http://arxiv.org/abs/2410.14099v1
- Date: Fri, 18 Oct 2024 00:32:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:31.521347
- Title: ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction
- Title(参考訳): ST-MoE-BERT:長期都市間移動予測のための時空間混合実験フレームワーク
- Authors: Haoyu He, Haozheng Luo, Qi R. Wang,
- Abstract要約: 我々はST-MoE-BERTと呼ばれる人間の移動パターンを予測する頑健な手法を提案する。
本手法は,Mixture-of-ExpertsアーキテクチャとBERTモデルを統合し,複雑な移動力学を捉える。
本稿では,GEO-BLEUおよびDTWにおける提案手法の有効性について述べる。
- 参考スコア(独自算出の注目度): 6.0588503913405045
- License:
- Abstract: Predicting human mobility across multiple cities presents significant challenges due to the complex and diverse spatial-temporal dynamics inherent in different urban environments. In this study, we propose a robust approach to predict human mobility patterns called ST-MoE-BERT. Compared to existing methods, our approach frames the prediction task as a spatial-temporal classification problem. Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics and perform the downstream human mobility prediction task. Additionally, transfer learning is integrated to solve the challenge of data scarcity in cross-city prediction. We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods. Notably, ST-MoE-BERT achieves an average improvement of 8.29%.
- Abstract(参考訳): 複数の都市にまたがる人的移動の予測は、異なる都市環境に固有の複雑で多様な空間的・時間的ダイナミクスによって大きな課題を呈している。
本研究では,ST-MoE-BERTと呼ばれる人間の移動パターンを予測するための頑健な手法を提案する。
従来の手法と比較して,提案手法は空間的時間的分類問題として予測タスクの枠組みを定めている。
提案手法は,Mixture-of-ExpertsアーキテクチャとBERTモデルを統合し,複雑な移動力学を捕捉し,下流の人間の移動予測タスクを実行する。
さらに、トランスファーラーニングは、都市間予測におけるデータ不足の課題を解決するために統合されている。
本稿では,GEO-BLEUおよびDTWにおける提案手法の有効性について述べる。
特にST-MoE-BERTは平均8.29%の改善を達成している。
関連論文リスト
- SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
現在のデータ駆動モデルは、しばしばデータ空間と多様な都市データソースの統合に苦しむ。
本稿では,交通事故予測のための動的学習フレームワークを提案する。
これは、高次のクロスリージョン学習を可能にするデュアル適応グラフ学習機構を組み込んでいる。
また、事故データと都市機能の複数のビューを融合させる事前注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-24T21:10:34Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
そこで本稿では,MoSSL を利用した新しい学習フレームワークを提案する。
2つの実世界のMOSTデータセットの結果は、最先端のベースラインと比較して、我々のアプローチの優位性を検証する。
論文 参考訳(メタデータ) (2024-05-06T08:24:06Z) - Mixing Individual and Collective Behaviours to Predict Out-of-Routine Mobility [4.442030973972382]
本研究では,個人と集団の移動行動を動的に統合する手法を提案する。
より高度な深層学習手法を超越して、ルーチン外モビリティを予測する上で、優れた性能を示す。
個人的行動と集団的行動のギャップを埋めることによって、我々のアプローチは透明で正確な予測を提供する。
論文 参考訳(メタデータ) (2024-04-03T13:38:49Z) - MobilityGPT: Enhanced Human Mobility Modeling with a GPT model [12.01839817432357]
我々はこれらの問題に対処するために、自己回帰生成タスクとして、人間のモビリティモデリングを再構築する。
本稿では,ジオスパティカル・アウェア・ジェネレーティブ・モデルであるモビリティGPTを提案する。
実世界のデータセットの実験では、モビリティGPTは最先端の手法よりも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:22:21Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - STORM-GAN: Spatio-Temporal Meta-GAN for Cross-City Estimation of Human
Mobility Responses to COVID-19 [17.611056163940404]
我々は, 都市間移動度推定問題に, 深層メタジェネレーション・フレームワークを用いて取り組む試みを初めて行った。
S-Temporal Meta-Generative Adrial Network (STORM-GAN) モデルを提案する。
提案手法は推定性能を大幅に向上し,性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-20T15:55:41Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
本稿では,道路網上の連続軌道を生成するために,新たな2段階生成対向フレームワークを提案する。
具体的には、A*アルゴリズムの人間の移動性仮説に基づいてジェネレータを構築し、人間の移動性について学習する。
判別器では, 逐次報酬と移動ヤウ報酬を組み合わせることで, 発電機の有効性を高める。
論文 参考訳(メタデータ) (2023-01-16T09:54:02Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
群衆における人間予測は、社会的相互作用をモデル化し、衝突のないマルチモーダル分布を出力するという課題を提示する。
SGANv2は、動き時間相互作用モデリングと変圧器に基づく識別器設計を備えた安全に配慮したSGANアーキテクチャである。
論文 参考訳(メタデータ) (2022-09-25T15:18:56Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。